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The a h  of t h i s  paper is t o  assess how w e l l  the  equation 

describes the  propagation of water waves i n  a laboratory experiment. Here 
x is the  horizontal coordinate, t is the  time, q is the displacement of 

the  surface of the  water fran its equi l ibr ium position and 
constant. 

1-1 is a real 

A nmerical  scheme has been developed to  solve the above equation for 
x, t > 0, subject to  the i n i t i a l  condition v(x,O) = 0 and to  the  boundary 
condition r \ ( O , t )  = h ( t ) ,  where h is a specified function. In  the present 
context, h can be thought of as an amplitude at one end of a long channel. 
The nmerical  scheme that has been used is an explicit, unconditionally stable 
schane having fourth-order accuracy in  both space and time. A rigorous analy- 
sis of the errors inherent in  t h e  numerical scheme, as w e l l  as convergence 
tests of the code, are presented. 

Quantitative canparisons between the model and our laboratory experiments 
typically showed differences of around Wo, increasing to  about 30% at the 
larger wave amplitudes used i n  the  experiments. 
considerably wrse than t h i s  i f  damping of the  waves was not  included ( i .e. ,  
i f  1-1 = 0). 

model equation is given and attanpts are d e  to  assess sane of the  factors 
leading to  the observed differences at  the  larger amplitudes. 

The agrement was found to  be 

A n  interpretation of the  experimental resul ts  i n  term of the 
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I 

This study attempts t o  assess a particular model for  the 

unidirectional propagation of water waves as a predictor of the 

resul ts  of a s e t  of laboratory experiments. Although the f i r s t  

one-dimensional model for the propagation of weakly nonlinear 

waves in shallow water was proposed last century (Korteweg & de 

Vries 1895) it is only i n  recent years that  any serious attempts 

have been made to  test t h i s  model in practice. The main reasons 

for  the long delay, with regard to  t h i s  and similar models, derive 

from the diff icul ty  in obtaining solutions t o  the equations, other 

than the rather special solitary-wave and cnoidal-wave solutions. 

However, it is now feasible to devise sound numerical schemes to  

integrate some of the model equations: we shall propose one such 

scheme, for  a particular model, and use it t o  t e s t  how w e l l  the 

model describes the experimental situation. 

To a certain extent such a pmgramne has been carried out by 

Zabusky & Galvin (1971) and by Hamnack & Segur (1974). Both these 

studies suggested that the Korteweg-de Vries equation (henceforth 

to  be referred t o  as the KdV equation) gave a reasonably good 

qualitative account of the experiments. But the quantitative 

agreement w a s  not striking, mainly because the studies were made 

under conditions t o  which the mdel should not necessarily be 

expected to apply and because the comparison procedures h w l v h g  

an approximate transformation of the initial data can lead t o  

significant errors (cf. appendix A). 

An important part of the present w r k  is the numerical 

integration of the mdel equation under scrutiny. Since the 

interpretat ion of labot-atory e x p e r b n t s  inevitably gives r i s e  to 
1 .  
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many diff icul t ies ,  it seemed appropriate t o  be absolutely sure that 

the numerical solutions were close approximations t o  the solutions 

of the model equations. 

of the numerical schemes employed, together with rigorous estimates 

of the error bounds and convergence tests of the scheme. 

Thus, in $ 3  we give, a detailed account 

The structure of the paper is  as follows. In $ 2  we first 

discuss model equations apposite t o  tlie present study, together with 

the concomitant assumptions bu i l t  in during the modelling, and then 

examine the more important empirical design c r i te r ia .  Some 

theoretical properties of the solutions to  the model t o  be tested are 

given in $ 3 .  

numerical scheme which is  described and analyzed in &4,5. ci Convergence 

tests for  the scheme are also given. 

procedure is described and in 97  the main results are presented. 

A t  the smaller amplitudes used in the experiments the model equation 

appears t o  have given a f a i r ly  good description of the experimental 

results, but at larger amplitudes the mdel did not work so w e l l .  

Some possible sources for these discrepancies are examined i n  $8 7.4,  

7.5. 

These are needed for  the error  estimates for  the 

In $6 the experimental 

A re/sw' of the main results is  given in $ 8 .  

2 .  EXYEKImTAL DESIGN 

2.1 bloodel equations 

Consider two-dimensional surface waves propagating along a 

. 

uniform horizontal channel. Suppose that  the waves propagate only 

in the positive x-direction and that the undisturbed depth of the 

l iquid in the ciiannel i s  d. A11 tne variables -&ed here are 

dimensionless, w i t h  the length scale taken t o  be the equilibrium 

depth, d,and the time scale t o  be (d/g)' , g being tlie acceleration 

due t o  gravity. Let t be the time and let  y=q(x , t )  represent the 

1 
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. 

vert ical  displacement of the surface of the l iquid from its 

equilibrium position. 

along the channel. 

is large and the maximum amplitude E of the waves is suff ic ient ly  

small, then a model for the propagation of i r rotat ional  waves is 

afforded by the KdV equation (see Whitham 1974) 

The horizontal coordinate x is  measured 

I f  the horizontal scale, 8-’ 8 of the mt ions  

The primary terms qt, 7% represent a uniform translation of a wave 

and it is  proposed tha t  the secondary terms account respectively 

for the mdif icat ion of the wave through the separate influences 

of nonlinear and dispersive effects. ‘The relative importance of 

the nonlinear and the dispersive effects is given by the parameter 

S = &6-’ , an important assumption in the derivation of KdV 

being tha t  t h i s  parameter is O(1) (cf. Meyer 1972, Whitham 1974).t 

These considerations suggest the introduction of a new dependent 

variable N and new independent variables E, ‘1: such that 

? = E N  , x = & - % ,  t = C h z .  

Thus, by assumption, N and its derivatives with respect to  the new 

independent variables are  a l l  0(1), and it follows that (KdV) can 

be written as 

N, + NE + $ E N N ~  + 2 E: NCct = 0 ( c z ) ,  

showing explicit ly the relative sizes of the various tern.(& the 

_ _ -  

t Here, and in what follows, the symbol O(-) w i l l  be used informally in the 
way that is  c o m n  in the construction and formal analysis of mdel 
equations for physical phenomena. 
which the relevant l imit  is  E +  0, 6 + 0 ,  S constant. 

A strict usage could be maintained i n  

For waves of wavelength 3\ and amplitude a ,  s = a 1’/d3. 
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right-hand-side of (2.2) we have indicated the relat ive s ize  of the 

terms neglected in the formal derivation of the KdV mdel) .  

physical interpretation of (2.2) is that the swll nonlinear and 

dispersive corrections can accumulate and, on time scales z of O ( E - ’ )  

A 

( o r  t- O ( E - ’ ~ ) )  , have made important modifications to  the i n i t i a l  

waveform. 

it follows that,  on time scales 

the model can no longer be formally just i f ied.  

MOreOever, since the terms neglected in  (2 .2 )  are O( & 2 )  , 
-45 z = O(E”) ( or t = O ( C  1 ) , 

Because of the orders of magnitude of the terms in  (2 .2)  an 

alternative model for the same physical si tuation, valid to  the same 

accuracy as the K d V  equation, is  the equation (see Peregrine 1966, 

Benjamin -- et  a l ,  1972) 

N, + N g  + - 1 NEET = N E ’ ) .  

In t e r n  of the physical variables ~ ( y , t )  t h i s  model takes the form 

Thus, in summary, (KdV) and (M) have been proposed as models 

for the propagation of water waves under the following conditions. 

( i )  The waves effectively propagate i n  one direction. This  

precludes the possibil i ty of interactions with reflected waves and, 

in particular, it means that  any variations i n  the depth of the channel 

should occur on length scales much larger than the horizontal scale 

of the waves. 

( i i )  The wave amplitudes are small (i .e.  € e l )  and the 

horizontal lmgth scale of the waves is large (i.e. Sc~l). 

(iii) The nonlinear and dispersive effects  are comparable: 

E K 2  = o m .  
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(iv) 

(VI 

(vi) 

The waves ar ise  on an i r rotat ional  flow. 

There is  no mechanical degradation of energy. 

The influence of surface tensioniis negligible (though 

th i s  res t r ic t ion  can be relaxed, cf. Korteweg i3 de Vries 1895). 

We can expect significant modifications t o  a waveform on a 

time scale 

be jus t i f ied  on times which are o(<y’). 
0(E-3’2) and, from a formal viewpoint, the model can not 

2.2 Previous studies 

In 1971 Zabusky & G a l V i n  reported some experiments in which a 

t r a in  of i n i t i a l l y  sinusoidal waves propagated into still water. 

A t  stations further along the channel they found that,  a f te r  the 

first couple of wave crests had passed, the wave profiles were very 

nearly periodic i n  t ime.  

experiment in which a periodic version of KdV was integrated, using 

a sinusoidal waveform as the in i t i a l  data. 

This property suggested a numerical 

Then, t o  compare the 

numerical computations with the experiments, the long-wave speed for 

l inear  disturbances w a s  used t o  provide a kind of equivalence between 

time in the periodic problem and position in the experimental 

configur’ation. 

22,  482 and 777. 

between the predicted wave shapes and those observed experimentally, 

but quantitative comparisons were not made, principally because 

viscous effects  had a significant influence on the experimental results.  

The experiments were made at values of S equal t o  

Fairly good qualitative agreement was obtained 

A study similar in concept to the p r o g r m e  to  be described 

here w a s  made by HarrYnack (1973). Water bas displaced a t  one end cf 

a channel generating an isolated waveform, the passage of which was 

observed a t  various positions along the channel. Comparisons made 



between the observed prof i les  and numerical solutions of (M) 

showed good quali tative agreement but ,  since the computations 

were not very accurate and since viscous effeots were again 

important, detailed quantitative comparisons were not made. 

For these experiments the value of S lay between about 1 and 10. 

In a subsequent experiment Hammack i3 Segur (1974) also 

followed the evolution of an isolated waveform propagating along 

a channel. Using the inverse-scattering methods developed fo r  the 

KdV equation they predicted both the number of solitons to  emerge 

from the i n i t i a l  waveform and also the amplitude of the largest  

soliton. 

with the experimental observations, but the predicted amplitude of 

the lea- soli ton (af ter  making a correction for  viscous damping 

along the lines suggested by Keulegan 1948) differed by about 15-20% 

The predicted number of emergent solitons was in agreement 

from the observed values. 

values of S ranging between 50 and 600. 

These experiments were carried out a t  

In each of the above studies, the theoretical solutions were 

obtained from the solution of a pure initial-value problem. However, 

the i n i t i a l  data set was not obtained in the form required for  the 

theoretical model, necessitating a transformation of the data. 

Because the transformation employed was inexact t h i s  may have led t o  

significant errors in the solution (see appendix A). 

2.3 Allowing for  dissipation 

One of the main conclusions to  be drahm from the previous 

experimental studies is  that  useful quantitative predictions 

can be made only by taking account of dissipative effects.  On 

the scale of the present experiment the main sources of wave 

damping appear to  derive from viscous dissipation i n  the boundary 
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layers on the  sides and bottom of the channel, f r o m  the 

influence of the meniscus a t  the side walls of the channel and 

perhaps from d a m p a  at the free surface ( s e e ~ h r n a r d ,  Mahony 

& Pritchard 1977 and Mahony & Pritchard 1980). I t  is possible 

t o  incorporate the effects of t h e  boundary layers on the walls 

of the channel into the theories described above (see Kakutani 

8, Matsuuchi 1975), but there are both empirical and theoretical 

uncertainti t ies about the representation of the effects a t  the 

free surface and a t  the meniscus (see Miles 1967, Mei & Liu 1973). 

Thus, any attempts to  account for dissipation m u s t ,  t o  a certain 

extent, be guesswork. 

The rationale behind the construction of models such as those 

described in 5 2.1 is that the various corrections to  the primary 

waveform can be calculated independently, with a composite model 

formed by including the modifications additively (on the assumption 

tha t  the coupling between them is negligible). 

it is sufficient, for the time being, to  consider the effects of 

damping only on waves of extremely small amplitude, so that a 

l inear  mdel  is  applicable. 

the frequency 

Because of th i s  

Then the dispersion relation between 

and the wavenumber k is given by 

’12 
w =  k(1-ik’) (KdV) ,  w = k ( f + k k l y  (M), w =  (ktanhk) (exact). (2.4) 

By construction the phase speeds o / k  for each of these relations 

are different only a t  the fourth order in k. 

The theory of Kakutani & Matsuuchi (1975) indicates that the 

effect of dissipation in the boundary layers on the rigid surfaces 

of the channel is  comparable with the nonlinear and the dispersive 

corrections from the inviscid theories when the wavenumber k is O(R 

Here the Reynolds number R=(gd’)’/l/y, where y represents the kinematic 

-’Is) . 
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I 

viscosity of the fluid.  

show that the dispersion relation for (KdV) should be modified t o  

Under these conditions Kakutani & Matsuuchi 

w = k ( 1 -  k Z )  - i p  lk lvT 9 

where p is a complex number depending on R . Thus, not only do 

the boundary layers induce a damping of the waves but they also 

affect  the phase speed slightly.  Moreover, the analysis indicates 

that  the boundary-layer damping can be neglected only when (kR)-”’<< k2. 

So, as a rough guide, we cannot expect t o  be able to  discard 

dissipative effects  when the water depth is  less than a metre. 

kind of damping introduced in (2.5) can, of course, also be 

incorporated into model (M). 

pseudo-differential operator in each of the model equations. 

The 

A term of this kind introduces a 

However, as indicated above, the boundary-layer theory considerably 

underestimates the damping rate (by about 409, on the scale of the 

present experiment, according t o  Mahony & Pritchard 1980). 

of the inadequacy of the theory in this respect we decided to  use an 

-- ad hoc representation of the wave damping t o  preserve the simple 

structure of the model equation, rather than attempting a more 

complicated representation that could not be to ta l ly  jus t i f ied  

anyway. 

damped at a ra te  proportional t o  k2 

introducing a term 

can eas i ly  be incorporated into the numerical scheme of 

Because 

Thus, we shall suppose that a wave of wavenumber k is 

having the effect  of 

, pe R ,  into the model equation, and th i s  

4 3. 
For the experiments t o  be described the waves were generated 

by a forced motion a t  a frequency 

of the energy should have resided in a single wavenmber k, 

W, , with the resul t  that  most 

, say. 

I Then, by choosing p such that the damping of waves of wavenumber 

k, agreed wi th  the experimental decay rate  a t  very small L 
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amplitudes, we should a t  ieasi have nodelled correctly the 

dissipation of the fundamental, even i f  other wavenumbers 

are  l ikely t o  have been dissipated at an incorrect rate. 

(This statement is of course based on the presmption that  the 

wave damping depended l inear ly  on 7 , which might not be 

jus t i f ied  in the case of damping derived from the effects of the 

menisci). 

These very considerations indicate that we need to  be 

circumspect about the representation of the dissipative effects ,  

a point we shall  consider in mre de ta i l  in 

the present l e t  us take the model equation in the form 

4 5.4. However, for  

2.4 Mathematical considerations 

Three kinds of mathematical problems have been studied in 

connection with (lidv) o r  

( i )  Pure initial-value problems. For t h i s  class of 

problem it is supposed tha t  the surface prof i le  is known a t  some 

instant,  say t = O .  Mathematically t h i s  amounts to  the specification 

Interest  is focussed on the solution of (KdV) or (M), defined for  

t 5 0 , which agrees with g at t = 0. 

function class comprised of smooth functions that decay to  zero 

sufficiently rapidly a t  

(2 .7)  constitutes a well-posed problem in conjunction with (M)(eg. see 

Benjamin -- et  al. 1072) or i n  conjunction with (KdV) (eg. see BUM & 

Smith 1975). 

If g is an element of a 

00,  then it is hown that the specification 

A physical realization of this formulation of the problem can 
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be achieved in a long channel by establishing a wavetrain of 

restricted spa t ia l  extent that  propagates from one end of the 

channel t o  the other. A photograph of the warer surface at  some 

instant could be used t o  determine the ini t ia l  datm g and the 

wave profile at later times could be compared with, say, numerical 

solutions to the model problem. (This, i n  essence, is  the kind 

of progranrme carried out by Hamnack &r Segur 1974. However, in 

the i r  case, the determination of g(x) was made f r o m  a temporal 

wave record g ( x o ,  t), jco fixed, together with the leading order 

approximation ~ ~ + q = = o  for  the wave field.  

A that  such a procedure can lead t o  significant errors and should 

be avoided.) 

I t  is shown i n  appendix 

( i i )  Periodic initial-value problems. These problems are 

the same as described in ( i )  except that  the i n i t i a l  datum, g, 

is  given a periodic function. 

for  (KdV) and for  (M) are w e l l  posed. 

realization of such a mdel  is  very d i f f i cu l t  t o  achieve. 

& Galvin 1971 used numerical solutions t o  a problem of t h i s  kind 

Again, the mathematical problems 

However, the physical 

(Zabusky 

to  explain quali tatively the behaviour of waves generated by the 

periodic motion of a wavemaker a t  one end of the channel, cf. 2 . 2  .) 

( i i i )  In i t i a l -  and boundary-value problems. For th i s  class 

x ,  t 7 0, of problem we are interested i n  solutions 7 (r,t) fo r  

t o  the model equations, subject t o  the conditions 

For consistency we suppose that 9 r O )  = h(O). 

by Boiia & Bryant (1973) tha t ,  under these conditions, (MI constitutes 

a well-posed problem i f  g,h are suitably smooth functions. 

a complete theory for  ( K d V )  has not yet appeared. 

I t  has been shown 

However, 

In physical terms g represents the  ini t ia l  configuration of 
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the water surface; usually we would expect a t  the outset that the 

water is undisturbed, i n  which case we would have g = 0 . 
function h( t )  represents an imposed amplitude,of the water surface 

a t  the left-hand end of the channel. Thus, we might think of this 

The 

kind of problem as a model for  waves wi th  known amplitude ini t ia ted 

a t  one end of a long channel. 

2.5 Practical considerations. The issues raised i n  the 

preceding discussion impose considerable restrictions on t he  

experimental design. But, in  addition, i f  the models are t o  

be of any real  practical  value they should be applicable t o  the 

kind of si tuation that usually obtains in the laboratory, namely 

the propagation of waves arising from the forcing effects of a 

wavemaker a t  one end of a diannel. Since wavemakers are usually 

driven in a periodic motion, it would be nice t o  preserve t h i s  

feature as well. 
the 

becauselimposed frequency effectively establishes a length scale 

fo r  the motions, allowing a fa i r ly  precise specification of the 

Indeed, such forcing would be desirable here 

parameter S .  In order t o  meet these requirements and t o  simplify 

the experimental procedure, i t  would appear that the most 

suitable kind of mathematical problem to  model is  the in i t i a l -  

and boundary-value formulation. (One of the main empirical 

d i f f icu l t ies  i n  modelling the pure initial-value formulation is 

that of obtaining an instantaneous spatial  measurement of the 

wave field.  But also, in our case, the wave tank available would 

not have been long enough for such an experiment.) A convenient 

experimental procedure would be t o  s t a r t  w i t h  the  channel free of 

motion and then to  set the wavemaker working a t  a fixed frequency 

and amplitude. 

' 

This would in i t ia te  a t ra in  of waves that would 
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propagate along the channel, retaining the i r  unidirectional 

quality until they reach the end of the channel, a t  which point 

the experiment would have to  cease. 

h ( t )  i n  (2.8) could be specified by a temporal record of the 

wave amplitude (taken a t  a position f a r  enough away from the 

wavemaker to  avoid confusing the free waves with the parasi t ic  

f i e l d  localized near the paddle). 

The bounc@ry condition 

The wave tank available i n  our laboratory was only Stm 

long. So, in  order t o  allow enough time for the waves t o  show 

significant modifications before reaching the end of the tank, 

the basic wavelength had not t o  be too large. 

it had t o  be larger than the channel width (30 cm) t o  avoid 

spontaneous generation of transverse modes. 

for  the wavelength appeared t o  be 36 an. 

wavelength-to-depth ra t io  of 12:l. 

On the other hand, 

A reasonable compromise 

We decided t o  use a 

In principle we would l i ke  the experiment t o  cover a range 

of wave amplitudes for  which the parameter S ,  measuring the 

relat ive importance of nonlinear and dispersive effects ,  spans 

a f a i r l y  representative range of parameter space. 

conditions, S would take a value of 0.1 a t  a wave amplitude of 0.002 cm 

and would be 10 a t  a wave amplitude of 0.2 cm. 

of achieving l inear  motions a t  one end of the parameter range, it would 

be necessary t o  use very small wave amplitudes. Fortunately, i n  our 

eqeriments, t h i s  did not pose any major d i f f icu l t ies .  

Under the above 

So, t o  be sure 
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3. PROPERTIES OF THE EXACT SOLUTION OF THE MIDEL EQUATIOK 

. 

. 

1 

In t h i s  section we study properties of the solution of the 

i n i t i a l -  and boundary-value problem 

where a,!, are non-negative constants and ‘d is a positive 

constant. We shal l  first discuss the questions of existence, 

uniqueness and a p r io r i  boundedness of 7 .  
fo r  a posteriori  error  estimates t o  be derived in 9 5, bounds for 

derivatives of 7 are given in terms of assumed bounds on 

Finally, it is  shown t h a t 7  decays exponentially i n  space, justifying 

the truncation of the spat ia l  domain i n  numerical calculations. 

Then, in preparation 

7 .  

3.1. Existence, uniqueness and a pr ior i  bounds for  7 
Suppose that  the boundary data is ‘smooth’ i n  the sense tha t ,  

fo r  a given T > 0 and an integer 4 3  1, 

Then, using the  techniques of Bona & Eryant (1972),  it follows that 
4, k a i a i  

(3.1) has a unique solution i c e T  ; that  is, (G) (x) q ( X , t )  

exists and is continuous on [O,m[ X [O,T] , for  i = 0,1, ..., C 

and j = 0,1, ..., k. (Here k may be any positive integer). 

these derivatives of T-J a l l  t end  to  zero as z*oo, and 7, -  are square 

integrable in x on [ O , m ]  . If Ih(t)\ and 

constant, say M, for t E [ O,T] , then using the methods of Bona & Bryant 

(1972) it can be shown, for t r[O,T] , that 

Fur themre ,  

Ih’(t)l are bounded by some 
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where bl , b2 are constants depending only on LZ,~,P, f and M . 
In addition it follows that the solution t o  (3.1) s a t i s f i e s  the 

equation (cf. Bona 8 Bryant 1972) 
I 

where 

The numerical scheme to  be described i n  44 is based on t h i s  foxmulation. 

From the definitions it follows, for any non-negative integer k, 

that  

Remarks.  (i) 

For example, i n  some separate work we have been able to  show that 

max(Jtll] 
obtain a posteriori estimates (see §S) which show that there is 

essentially no growth i n  the maxhm of 1.11 , provided the same holds 

true for  a discrete approximation to  q ,  

The a pr ior i  bound (3.3) can be improved considerably. 

grows no faster than t. However, (3.3) i s  sufficient t o  

( i i )  The above theory holds when (3.1) is posed with nun-zero 

for  k 3 2, initial data 

tha t  g and its derivatives tend t o  zero as x-c(x, ,  that  g, g' are square 

integrable and that g(0) = h(0). 

'1 (x,O) = g(x), provided that  gcgk([O,&]) 
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. 

3.2. bmds for  the derivatives of 7 
~ ~ u n d s  an the temporal and spat ia l  derivatives of 9 are to  

4 

be derived in  terms of assumred bounds on the maximum of 171 

i tself .  Thus for  T > OD define 

We shall  use the notation 

where +J represents 7 o r  its derivatives. 

Romds for  qt can be obtained directly from (3.4) through 

an application of Hlilder's inequality (together w i t h  (3.6)). These 

imply that 

llqt(*,t)ll s h z ( t )  t l-' [ar( t )+$pa2(t ) ]  + 3(p / 'd )U( t ) ,  

where h: is defined by 

with t > 0 and k a nun-negative integer. (Note that Jh(t)l d cr ( t )  .) 

Bounds fo r  the spat ia l  derivatives may also be deduced from 

(3.4). On differentiating (3.4) with respect to  x we have that 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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Thus, since 5 3 0 was arbitrary,  

l J~z(*, t ) l l  4 P,(hL)( t ) ,  o(t), t )  - 

Note that  P, ( h i ' ( t ) ,  o ( t )  , t) 5 M .  min [ t, %/p] , SO t$at P, 

bounded by a polynomial linear i n  t and h: (t) and quadratic in 

cr ( t ) ,  having coefficients that are polynomials in a,p,p and f 4  . 
Moreover, the (explicit) dependence on t can be ignored for t 3 ~ / p .  

Born& fo r  higher-order spatial derivatives can be obtained 

is 

rrr 
inductively by similar kinds of arguments, leading to  the &lowing 

lema. 

Lemna 3.1. - L e t  T > 0. Suppose that hce'([O,T]) and that h(0) = 0. 

- Let '1 be the solution t o  (3.1) and l e t  h i  - and cr be defined by (3.10) 

and(3.7) respectively. Then, for  any positive integer k and for 

tE:I:O,TI , 
ll(L,k V ( * ¶ d I l  . < Pk (hE( t )  dt), t) 

where 

inin{ t, y/p] , and of degree k+l - in a ( t ) ,  having coefficients that 

are polynomials i n  a, p, p c d  %-i 

Pk can be bounded by a polynamial of degree k - in hL(t) -- and 

Comnent. A polynomial P(x, ,. . . ,x,) is said t o  have degree in  

the variable xi i f  P is a polynomial of degree a t  most Pj in the 

variable xj ,  when all  the other variables are held fixed. 

. 
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3.3. Decay ra tes  for the exact solution 

Lema 3.2. Let T > 0 and suppose that  h c  4' ( [  0, T I  ), w i t h  

h(0) - 0. Let 7 be the solution t o  (3.1) and l e t  h:' , h: - and 

Q be defined by (3.10) ,(3.10) and (3.7) respectively. Then -, 
for  any rea l  number rE10, r - f ~  there is a function c = ~ ( u ( t ) )  oo 

Remarks. ( i )  This estimate says, h effect ,  the.t solutions to  (3.1) 

represent waves which propagate with speed not exceeding C / r .  When 

= 0, the speed C/r is minimized when r = (3$ , so that  

C / r  < 343 (a+fpo). 

( i i )  With p -  0, 'solitary wave' solutions to  (3.1) 
4 

of amplitude C decay in space a t  a ra te  r - [ X (1+ 3a/pa)]' and 

pmpagate w i t h  speed at $ ~ u .  

( i i i )  Similar results also apply when (3.1) is posed 

with nan-zero initial data 7 (r,O) = g ( x ) ,  provided g(0) = h(0) , g' 

is square integrable and lg(x)I < M e-r for x 3 0. "he estimate 

is then modified by the addition of the term M exp(Ct-rx). 

Pmof. Let X > 0 and define a weighting fmcticm w such that - 
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Set V(X t )  = w(x).?(x t )  and multiply (3.4) by w .  It follows that 

- 
When r is in the interval 1 0, v - * [  , e Y w ( x )  < 1 for any x 3 0. 

Therefore, after multiplying (3.14) by V(x,t)  and applying the a l d e r  

- 

inequality, we have that 

From the definitions (3.5) it follows that 

Using these inequalities in  (3.15) we see that 
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But since 3c is an arbitrary point, it follows that  

and, on l e t t ing  to + t, we have 

A further application of Gmnwall-s inequality gives 

so tha t  

So f a r  we have held X fixed, but i f  we now let  X+m the conclusion 

of the lema follows except that a is replaced by a, i n  the function 

E (t) . 
we can repeat the above argtmnt w i t h  w(x) = exp(rx) for  all  x 3 0. 

We now know that Ilv(* ,t)II = 11.0 (.,t)l[ < 00 and the argumnt using 

Grunwall’s inequality is therefore valid. The improvement in the 

Bu t ,  having deduced that (x,t) decreases exponentially i n  x 

constant a comes because 

Using t h i s  estimate instead of (3.16) leads to  the stated result .  
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4 .  nn; hWERIW SaEML 

4 . 1  Spat ia l  Discretization 

?lie numerical scheme is based on the in tegra l  equation ( 3 . 4 ) .  

The equation is first discret ized i n  space, i t s  right-hand s ide  

i s  evaluated and the resu l tan t  system of  ordinary d i f f e ren t i a l  

equations i s  integrated folward i n  time. 

The spa t i a l  d i scre t iza t ion  is  affected by approximating the 

in tegra ls  of (3.4) by the trapezoidal ru le  w i t h  der ivat ive correction 

a t  the end points of the domain (see Davies & Rabinowitz 1967).  

truncating the ha l f  l i n e  [ 0, DO [ and introducing a uniform pa r t i t i on  

of iu'+l points,  [ 0 ,  A X  , Z A x ,  . . . , N A Z J ,  we have, f o r  any su f f i c i en t ly  

smooth function V( x) , the  approxinat ion 

Thus,  

kAx 
z I j , k ( V )  E  AX ( V [ j A x + )  + V(kAx-))  

f4.1- l  
k- 1 

+ C x  V ( i A x )  t ; A x 2  ( V ' ( j A x + )  - V'(jAx-)), 
F j + l  

where j ,k are na tura l  numbers w i t h  0 s j c kr N .  

fourth-order accurac). , provided V has four bounded continuous 

derivatives on the open in te rva l  

T h i s  approxiP,ation has 

] j Ax, kAx[ (see $ 5 . 1  belox). 

In us ing  (4.1) t o  approximate (3.5) we  note tha t  the function 

V(y) is of the form J(x,y).v(y),  where v(y) is assumed t o  have four 

bounded, continuous derivatives on ]O,K Ax[ and J(x,y)  (which is  used 

t o  symbolize e i t h e r  o r  K) has four bounded, continuous der ivat ives ,  

as functions o f  y ,  on each of  ]O,x[ 

approximation (4 .1 )  i s  t o  be applied separately on eadi of these 

in te rva ls  and the  sum i s  t o  be taken. I;iien :i i s  large enough it 

can be shorn (see 4 5.1) t ha t  the contribution from the right-hand 

end poin t ,  L a x ,  is negligibly small, so tha t  t e r n  a r i s ing  there  

and ]x,K A x [  . Thus, the 

can be omitted from the numerical scheme. Therefore, i f  lie denote 
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N 

j-! 
t Ax 1 H q  ~j +   AX/^)' , (4.3) 

and 

with kii z 0. 

The con t inbus  quant i t ies  v’(O+) and v ’ ( i A x )  i n  (4.4) a re  st i l l  

t o  be discret ized.  Since both these terms derive from the second- 

order  correction terms t o  t h e  trapezoidal r u l e i t  i s  su f f i c i en t  t o  

approximate them only t o  second order t o  r e t a in  the overal l  fourth- 

order approximation of the integral .  Thus, we wri te  

and, i n c o q o r a t  ing these approxirat ions in (4.4) , we have 
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Using (4.3) and(4.5) we construct an approximation t o  (3.5) of the 

form 

rt = m F(t,=y+iB1') - p w 7 )  3 (4.01 

where E ,  5 are vector functions with, for  example, the notation 

N F E (F, , . . . , F, ) . 
write each of 2 and 5 as the sum of two vectors, i .e .  

I t  i s  convenient for  computational purposes to  

2 
w F ( t , z )  z I'(t,u) - + C'(u) , G ( u )  M Y  G ' ( w )  N -  t 5 (y) 

where 
\ 

Iiere 

they involve only vo , . . . ,vM. 

= (vo ,. . ,v,). Note that F l  , GL are defined V i a l ,  even though 

4 .2  Ai eff ic ient  coqwtat ional procedure 

Before discussing the  discretization i n  time it i s  worthwhile 

t o  consider eff ic ient  ways of computing u F' and G' . 
c F' and c G' directly would require O(S ) 

Evaluating 
2 operations, although t h i s  
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can eas i ly  be reduced t o  O( N log N )  operations, through the use 

of a fast convolution method. 

as a difference approximation t o  (3.5) and reduce the computation 

of c F' and E' t o  O(K) operations. To do t h i s ,  we introduce a 

difference operator D' defined by 

liowxer, it i s  possible t o  view (4.6) 

I 

so tha t  A = 1 + 2B. 

The operator D * i s  effectively an infinite-order approximation 

t o  (1-'f 8: ) , i n  the sense tha t  when D2 is  applied t o  the in tegra l  

kernel f o r  the inverse of (1  - 3' 8; ) , the Kronecker 6 - function 

resu l t s ,  exactly.  

D & E O . )  Thus, applying D t o  cr F' and  5 (and a f t e r  some simplification) 

it follows, f o r  2 C i < 3-1, that 

iAxldY , i c  2 . (To see t h i s ,  l e t  wc = e Then 
2 2 4 

and J 

In order t o  complete the systern of equations we must calculate the 

values of (D ,F Ii ,  (D2G')i Y f o r  i = 1 and i = N .  

i = 1, 

2 1  These  yield, for 

(4.10) 1 AF:  + BF: = -BC.r'(t) t ( B A x / 3 ' ) ( 1 3 ~ ~ - 4 ~ ,  - 9 v o )  

and A d ,  + BG; = (v- '+ (Az/Yj2) B uo + ( ~ A x / I ' ~ ~ )  si& (AX/&,) V, ,J I 
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and, fo r  i = N ,  
T 

a 
We propose that  E’ , 5‘ be eval$ed by solving the tridiagonal 

system of equations (4.9 - 4.11), whidi requires only O(N) operations. 

To solve these equations we must f irst  evaluate the terms Fd+, and 

that appear in (4.11), the calculations for  which can be made I 
GNtl 

expl ic i t ly  using the formulae (4.7) , (4.8). (Note that  such a 

computation involves only O(N) operations.) 

(seei5.1) that the retention of the quantit ies FN+, , 
only exponentially small consequence and it is more convenient simply 

t o  discard them from the system (4.9 - 4.11) .  Let us denote the solution 

of the r e s u l t i n g  set of equations (i.e. the ones neglecting FA+, , G,, 

However, it can be shown 
4 1 

GN+, is  of 

1 

4.3. Temporal discretization 

Let us denote the semi-discrete approximation t o  7 by the vector 

function g(t) = (ug( t ) ,  u t  (t), ..., u,(t)),where g is  defined by 

2 2 and d = E’ + N F2 ’ -  G = - E‘ + - GZ. 

Then i f  h is identified with uo wherever it appears in  the definition of 

u F and E, the set  of equations ( 4 . 1 2 )  may be written as a system of  

c 

Here denotes the vector (u i ,  u:, ..., u, ). 

N 

ordinary-differential equations 

(4.13) 
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for  tile vector,  2 = (ii, , i12 ,. . . ,*ti,,). 
(see $5.3) t o  have a solution on an in te rva l  [O,T,] , where To tends t o  

i n f i n i t y  as both A X  --c 0 and X,= N A x +  60. 

T!:is set of eq~u t ions  cm be shown 

1 

The temporal discret izat ion of (4.13) has been effected thnugh a 

prediction-correction method which, i n  the  present case, is e f f i c i en t  

because the  i n i t i a l  datum is zero and no s tar t -up procedure i s  needed. 

Tlie continuous quantity h ( t )  appearing i n  the  def ini t ion of 

i s  calculated by t h e  fourth-order central-difference formula 

I 
(cf .  ( 4 . 7 ) )  

h'(nAt) dhn = (hn-* - 8hn-' + 8 hn+' - hw+2)/( 12At) , (4.14) 

where h" = h(n At), n e  N . Let 3" (v) denote the function obtained 

by subst i tut ing dhn fo r  h'(n A t )  

f u l l y  discrete approximation t o  q t o  be the vector function given by 

Moulton's method (cf.  Isaacson & Keller 1966), namely 

in  2 a t  t h a t  point. Then we take the 

Since the i n i t i a l  datum i s  presumed t o  be zero, w e  sha l l  take uo, u-' , 
... (and ho, h-' ,...) t o  be zero as the s t a r t i ng  values f o r  (4.15). 

I t  should be noted tha t  there are no s t a b i l i t y  l imitations on the size 

of A t  i n  (4.15) because A x does not appear in  the denominator of 3 .  
The e r ro r  induced by using the above scheme t o  approximate the 

solut ion of (3.1) i s  O( Ax4+ A t 4 )  and the  same methods can be 

employed t o  develop sdiemes of arbi t rary order of accuracy by using 

higher-order derivative corrections f o r  the trapezoidal ru le  and hipher- 

order prediction-correction mttioils. k t  befme deducing the accuracy 

of the  approximation we sha l l  f i r s t  describe sone numerical tests made 

w i t h  the scheme. 
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4 .4 .  Convergence Tests 

The theoretical convergence ra te  of the schemc was checked bJr 

comparing numerical solutions for  the propagation of a solitar). wave 

with the 'exact' solution for  the continuous equation. Kith = 0 

and for  3~ E R ,  there is a family of exact soluztions t o  (3. la) of the 

forn 

where y,,>O i s  the (maximum) amplitude of the wave and xo is  a real 

constant. The wave propagates without change of form a t  a steady 

speed (a + $,9qo). The constant xo is a parameter used t o  'offset '  

the sol i tary wave s o  tha t ,  a t  t = 0 ,  the wave crest  i s  located a t  

x = -xo ; alternatively, the wave crest passes an observer stationed 

at x = 0 a t  time t = xo/( ~s ips). Therefore, i f  a t  x = 0 we were 

t o  use (4.16) as the boundary data h( t )  , we would have, i n  effect ,  

an exact solution t o  (3.1). 

of t, is  exact only on the whole real  l i ne  but,  because of the 

exponential decay i n  the ' t a i l s '  of (4.16),  7 can be made arbi t rar i ly  

small a t  t = 0 (by choosing xo sufficiently large) so that  for 

t E [O, 00 [ the function (4.16) can provide a close approximation t o  

an exact solution of (3.1). 

a truncation introduces an incompatibility a t  ( 0 , O )  between q (0 , t )  

and q (x,O) and this may s l igh t ly  pollute the numerical solutions. 

Iievertheless, we have taken (4.16) as an 'exact' solution and 

have carried out a convergence test for  the schenie, the results of 

which are given in  table 4 . 1 .  

a t  time T and a t  x = i Ax, O S  i i N. 

table 4 . 1  are EMU) = max { Iui(T) - y(iAix,T)I : osis N ]  . The 

computations reported in  table 4.l(a) were made with 

Of course th i s  solution, as a function 

I t  should however be noted that  such 

Let u. (T) be the computed solution 
1 

Then the entr ies  shoiin i n  

qo = 0.25, 
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(whidi was roughly the largest  wave amplitude encountered in  the 

experiments) with xo chosen so that qh,, = 0.1 x 

and with A t  = A s  (E A )  . The choice of A t  =,Ax was made because 

preliminary tests suggested t h i s  was near the optimal choice, i n  

terms of accuracy achieved for  a given amount of work, and because 

it is sufficient t o  take At/Ax = constant t o  check the convergence 

rate ,  i f  the e r ro r  is proportional t o  ( A t  

used for  these computations was approximately the same as that  

needed t o  make comparisons with the laboratory experiments. 

a t  (0 ,O)  , 

4 4 
+ A x  ) . The domain 

I t  i s  seen i n  table  4 . l ( a )  tha t ,  apart from the smallest 

time quoted, the errors decreased a t  approximately the 1 6 : l  r a t io  

expected of the scheme. A i  t = 19.2 the wave crest had not yet 

energed from the 'wavemaker', so that  the wave v l i t u d e s  were 

quite small (cf.  the value of l l ~ l l G p  quoted in  the table) and the 

influence of the truncation of the input waveform i s  reflected by 

convergence rates being rather smaller than expected for  the scheme. 

lSith q(O,O)/q,, chosen t o  be 0.1 x lo-' the errors EM (see table 4.l(b)) 

were of a similar form t o  those given in  table 4.l(a). 

would appear that  the differences derived from the different values 

of x used i n  the two experiments: for  the l a t t e r  exqerirnent the 

' solitary' wave was centred approximately at  x = 45.70 a t  t = 67.20, 

whereas fo r  the former it vas centred approximately a t  x = 4 8 . 5 2 .  

However, when the error EM was detemuned w i t h  the wave crest a t  

45.70, the errors  fo r  each experiment were nearll- the same (for the 

cases A =  0.15, 0.075). 

Indeed, it 

0 

A similar test of the convergence of the numerical scheme i ias 

made by comparing solutions with q(X,t) f o r  X fixed. 

the computed solution a t  position X and a t  time t = j A t ,  O C  j s Y, 

I f  d ( X )  is  
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I 

A E, od E, I 4  

0.286 

15.6 

0.183 (-1) 

16.6 

0.110 (-2) 

16.9 

0.651(-4) 

~ 

0.6 

ratio 

0.3 

ratio 

0.15 

ratio 

0.075 

~~ 

0.178 

13.6 

0.131 (-1) 

15.1 

0.870 (-3) 

15.8 

0.551(-4) 

0.165 

13.8 

0.120 (-1) 

15.5 . 

0.774(-3) 

16 .O 

0.485 (-4) 

1.09 0.426 0.250 

TABLE 4.2 The errors E,, E,, E, indued in integrating a solitary wave 
(4.16) with - 0.25, X - 36.0. M A t  = 180.0. A = At = Ax ; 

7 (0,O) = 0 . h  xD - 27.079. 

~ 

E, (15.0) E, (15.0) E, (30.0) E, (30.0) E, (15.0) 

0.707 (-1) 

14.4 

0.492 (-2) 

15.2 

0.323(-3) 

16.6 

0.195 (-4) 

0.6 

ratio 

0.3 

ratio 

0.15 

ratio 

0.075 

0.105 

16.0 

0.655(-2) 

16.4 

0.400(-3) 

17.1 

O.t34( -4)  

0.651 (-1) 

14.9 

0.4 38 (-2) 

15.6 

0.280(-3) 

16.8 

0.167 (-4) 

0.176 

14.3 

0.123(-1) 

15.9 

0.772 (-3) 

17.1 

0.451(-4) 

0.133 

13.6 

0.975(-2) 

15.3 

0.639(-3) 

16.8, 

0.380 (-4) 

0.118 

13.6 

0.866 (-2) 

15.7 

0.553(-3) 

16.9 

0.327 (-4) 
~~ 

0.417 1.11 0.409 I 0.231 1.10 0.233 

TBBLE 4.3 A convergence table fur the nlmerical scheme with p#O. ME:= 75.0 

= 1.5, p - 0.014, h = A t  9 A X  ; cc = 1, r - 2 . 
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then we have calculated 

The results of such a calculation for = 0.25 and X = 36.0 are 

given in  table 4 . 2 ,  and again a convergence rate  of about 4 w a s  

obtained. 

7 0  

h'ith p # 0, we do not know of an exact solution t o  the 

continuous equation, so  the convergence rate  of the scheme has 

had t o  be checked in  a different way. 

coding of the dissipative term w a s  correct, experiments were run 

with the linear model (1.e.p = 0) with h( t )  diosen to  be sinusoidal 

i n  time and the decay rate  of these waves was compared w i t h  that 

deduced from the dispersion relation. (The results of a t e s t  of t h i s  

kind are described below in 4 7.5) 

To ascertain tha t  the 

Having checked that the dissipative term had been correctly 

= 1.5) coded, the convergence rate  for  the f u l l  equation (with 

was estinated by taking the 'exact' solution t o  be the results from 

a computation made w i t l i  a small value of A (i.e. A =  0.0375) and 

comparing th i s  solution with numerical solutions a t  larger values of 

A . Tiius, using (4.16) a t  x = 0 for  the boundary data h ( t ) ,  with 

v(O,O)/?, chosen t o  be 0.1 x lo-' ( i .e.  x,"27.079), and with 

p = 0.d14 (the value used i n  the comparisons of 4 7 . 3 )  the convergence 

ra tes ,  as shom in  table 4 . 3 ,  were again found t o  be about 4. 
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5. ERROR ESTIMATES FOR THE DISCRETE SCHEME 

8 

In t h i s  chapter we shal l  let ci , i = 1,2 ,..., denote real 

constants. Also, we shall  assm that  At, Ax s 1 so that  the 

dependence of constants on positive pawers of A t  and A x  can 

be ignored. The notation is the same as that used in g§ 3,4. 

5.1. Spatial  discretization errors 

The error associated with the trapezoidal rule w i t h  derivative 

end correction, as given in  (4.1), is: 

Lema 5.1. - If V has four bounded, continuous derivations on the 

open interval ] jAx, kAx[ ,then 
,- 

This is a standard result (see, for example, Davis C Rabhowitz 1967). 

The e r ror  arising f m  the use of the vector E' can be estimated 
4 as the sun of a tern proportional to Ax and a tern arising from our 

approximation at the right-hand extremity of the interval. 

L- 5.2. Suppose that  v has four continuous derivatives on the 

interval [: 0,  NAx] . - Let 

Then, for  i = 1 , 2 ,  ..., N , 
= (v,,. . .,vN)# where vi= v(iA7c). 

-- 

where the constants c,, c2  depend anly on Y . 
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proof. By definition (see (4.1), (4 .2) ,  (4.7))i t  follows, for 

i - I,.. .,t+1 , that  

- 

The difference approximations in the fourth and f i f t h  t e r n  are 

less than 

$ Ax2-  { ld3)(dI : = E  [0, NAx] 1 . 
The last tern can be estimated as follows: 

Combining these estimates, together with a direct estimate for  the 

second last tern, we have that 

LI - I,,; ( E ( i A 3 ~ ,  0 )  v) - I i , u  ( K  ( i A = , * )  21) I iAx/fY I F;(t,g) - h’(t)& 

But lenuua 5.1 implies that  
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which can be estimated further through the use of Leibnitz 's  rule 

(together with (3.6)) and the Hiilder inequality. 

Thus, it follaws that  
I 

E s c3 Az' - { i v ' " ( x ) l :  x ~ [ o , N A = t ]  j =  0, . .*) 4 1  , 
where c3 depends only on 1 . Then combining th i s  estimate and (5.1) 

we have the required result for  the case i # N. For the case i = N,  

12% 

The techniques 

(The constants 

A similar 

used when i # N apply in the same way in this case. 

here can be chosen t o  be the same as for  the case i # N.) 

result can be established in relation to  the vector E. 

Lenma 5.3. Suppose that .v has four continuous derivatives on the 

where the constants c4 , cs depend only an 7 . 
The proof of t h i s  lemna follows a similar pattern t o  that  for 

lema 5.2 and is therefore omitted. 

The above lermras can now be combined t o  give the following 

estimate. 



-34- 

Corollary 5.1. suppose that v has four continuous derivatives 

an the interval [O,NAx] 

Then, for i = 1,2,. . .,N, 
Let g =  (q, ,..., u,), where vi E v( i .Az) .  

1 

- -  
1 F{( t ,g)  - h’(t)e- ‘Ad” -J*K(ihr,y) v(y)dy I 

where c, = c, i c, 

only on Y . 
$ = C ,  + c5 and cg i s  another constant depending - - 

- Proof. Define = sink(iAr/dr)/ ~ i u r k [ ( N + l ) A x / J Y ]  . ( 5  2) 
Recall from 94.2 that E ’  and c4 respectively differ f m  E ’  and G’ 
only because t he  tern involving F;,, 

Thus, it follows from the definitians (4.10), (4.11) that 

and G:,, were not retained. 

u 1 

F i ( t , g )  = Fi(t,y) - S; F i , l l t , g )  , ZiCz) = - ~iG,,+,(z) , (5.3) 

for i = l D Z n * - * , N -  From the definition (4.7) of F ‘  we see that - 
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where c' - i t 3 (Az/V]  . Similarly, it follaws from (4.8) that  

c 

where c '' depends only on Y Therefore, on defining c8 = c'+ c", 

we have that 

and the result follows from lemas 5.2 and 5.3. 

5.2. Lipschitz estimate for  2 
In t h i s  section llgil w i l l  be used to denote the t ,  nom of 

2 ; i.e. if g =  (u ,,..., q,), then llgll = - { l ~ ; l  : i =  I,.. .> r~ 3 .  
The map 3 )-t _~'(t,g) is an affine map, taking tme form 

4 E [t,!) = k(t) + gx, say. The 

maximm, absolute-row sum of E) can be estimated as 

operator nom o f E  (it is the 

-jb& 4 IIg 11 s 3/2Jr  + 2 / ~  E 3 C, Since l h t e  < Jr , it follows that 
j Z l  

Therefore ~ l ~ ' ( t , g ) - ~ ' ( t , ~ ) I I  = I I~~ (z -s ) I I  p 4 c,, IIz-gII. 

(Note that, here and below, the norm on x - ~  is a norm on (N+1) -vectors 

whereas the remaining noms are taken on N-vectors.) Similarly, we 
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The m a p u ~ ~ ~ ( ? 1 ) i s  * . I C )  l inear and its 1- operator nom i s  bounded by 

A3/1246 (see (4.7)),  so that  an estimate for  E = E' + E' i s  
I 

I u 

O€(t,Y) -Yt,g)l~ s CF IIpgII 9 

where cF = c,, + ; t ( .  

A similar argument can be applied to  the map 

an estimate of the form 

I+ GCz) u leading to  

(5 = 4 )  

. 

where cG depends only on f . 
A combination of these two estimates can be used t o  obtain 

a Lipschitz estimate 

Let 

and le t  x2 denote ( v t ,  ..., vM ) . 

on - 3 (see defined i n  (4.12) and (4.13)). 

denote the vector (vl, . .,v,>, l e t  denote (h(t) ,vl,. . . ,v,) 
2 Then, since i(t,r) is  affine 

in ys 

\ l Z ( t , C ) - $ ( t , 4  ~~( t ,au+f~zr2)  - % a ~ + + p d I I  t ~ I Iw-G(v ) I I  - 
... 

s allr(t,v) -~(t,tg)ll + fg~~E(t,x21 -I(t,d)ll + p I I ~ ~ ~ ) - ~ k ) l l ,  

where 5 depends only on oc,/j,Y and p . 
Lipschitz continuous in 

So we see that 3 is  unifowly 

on bounded subsets of & . 

5.3. Existence and bounds for  the semi-discrete approximation 

L e t  s ( t )  represent the vector f 9 i m  vi(t) E q( iAr , t ) ,  i= l,..*9N, 
C 
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. 

where 7 is the solution to  (3.1). Then, from corollary (5.1) and 

1- (3.1) , (3.2) it follows t h a t  

This expression can be simplified by the use of the inequality 
-(N+l)Ax/JY f ejAr/4r t Ct -rjAx -1 ct - r (N+l)Ax 

Ax e j = O  c (r-4 -r) e 9 

so tha t  

= e, (t) [ = e, (h:’(t) dt), t , Ax, HA%)] 
and clq depends only on a,p,Y, p and r. Note that,  by definition, 

e,  is an increasing function of t. 

Under the assupt ion that h e  4‘ , it follows from $ 5 . 2  

tha t  .L 3 is locally Lipschitz continuous. Thus there is a unique 

solution u( t )  u t o  (4.12) for t E [0, to] for some t o  > 0 

tha t  T, is given by 

Suppose 

Since M u(0) = 9 (0) = 2, and both ,u and 

We shal l  now obtain a lower bound for To and show that T o  --c a0 

as AX-, 0 and N A x - c a ,  . 
(5.7) that 

are continuous, then To > 0. 

For t E [O,To] it follows from (5 .6 )  and 
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a s e t  of zero measure, it follows from (a weak form of)  Gronwall's 

lemma that 

(5.10) 

f y w  y 

for  tE[:O,To]. 

However, i f  T o  were such that  y(To)  < 1 

the maximality in the definition (5.8), as follows. 

u,(t) i s  still defined for  t E: [To, To+t,]  , t ,  > 0 

is locally Lipschitz CmtinWus;md IIu(t) u - g(t) I\ 6 1, for t€[ToYTo+t,] , 
since u m and are continuous. Therefore q ( T , )  < 1 cannot hold. 

it would cmtradict  

In this case 

, because 2 

Since e, ( t )  and a ( t )  are non-decreasing in t, it follows that 

(t) is s t r i c t l y  increasing in t , as soon as e, ( t )  > 0 , Lemas 

3.1, 3.2 imply t h a t v  is  continuous and hence ?(t) is continuous. 

Also ?y(t)+a as t + m  . 
the unique solution of 

- Thus it follows that To 2 T , where T is  

Y i T )  = 1 . (5.11) 

Note that,  since e , ( t )  -+ 0 (with t fixed), 

f+co as Ar-0 and NAx+m. Thus exists on an interval [O,T,] 

as Ax+O and NAx+m 
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that  becomes a rb i t r a r i l y  large as Ax+O and F J A s - t a , .  Moreover 

I I ~ W I I  s i i w - q ( t ) H  + nqct)ii Q i + ~ - ( t ) ,  (5.12) 

for  t ~ [ o ,  T,] . Fran now on we shall drop the distinction between 

To and T, and we w i l l  think of T as the upper l i m i t  of the time 

interval over which the above estimates are valid. Although T d To 
the advantage of using 

(T) = 1, whereas To is not. 

is that it is determined by the equation 

The above estimates are valid under the assumption tha t  

h e  &'([O,r]) . We sha l l  now derive bounds fo r  the temporal derivatives 

of u Y under the assup t i an  that h e 4  ([O,TJ), for some integer k 

These may be obtained directly from (4.13). 

written in the form 

k 
1. 

Observe that can be 

where c ( t )  = H[t,(Rh(t)tfBh2(t),0 ,...,0)] - ps[h(t),O,...,O] and 

are matrices such that  11 c cF and 11 % 11 < %, 8s %, % 
defined in  (5.4), (5.5) . 
narPely that ( w ) ~  - uivi, i = l , Z ,  ..., N.) The vector C ( t )  is given 

by (cf. definit ion 5.2) 

(We recall  the notation for the product g ,v, 

quadratic polynomial with coefficients that  are polynanials i n  
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rational coefficients. 

of 3 we see tha t  
1 

(5.12) fo r  [ ~ ~ I t , l l  a that  

Comnent. 

from (5.9) and (5.10). 

can be obtained showing that 

Ax-co and NAr ,+oo .  

Bounds for these temporal derivatives can also be obtained 

Proceding from that  s tar t ing point, estimates 

(z-g)(t)])-tO for  any k, t ,  when 

(5.14) 
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5.4. ~ollnds for  the fu l ly  discrete problem 

Having shown in 5.3 that  the semi-discrete approximation 
I 

g is close to  7 we shal l  now consider the fu l ly  discrete 

approximation as effected by the prediction-correction method 

(4.15). The following proposition is  a direct adaptation of the 

resul ts  given in Isaacson & Keller (1966, see p.388ff.). 

Proposition. - Let 7 ,  A t  7 0 

Suppose tha t  . . . Y  y = y(t)  E 8'([-3At,T], RU) is such that  - = $(t,y) - 
on the interval [-3At,T], tha t  .L y =, 0 on [-3At,0] and that  LL- f is 

and l e t  1 - 11 be any norm on RN. 

L i p s d i t z  continuous in x ,  with constant K, V ~ Z :  

\lf(t,i;L)-f(t,.r)ls KI \g -%\ \  , V 2,g E!?"' and for t ~ [ - 3 A t , ? ]  

Let y" , n 3 1, be determined by 
v. - 

with - b3 = 19/720, b4= 251/1920 - and cd = K ( 1 7 t  3 0 K A t ) .  

To apply this proposition t o  the scheme (4.15) we shall  use the 

P, norm on IR' and l e t  the errors Y g E ,  8" be 
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1 
J 

(cf. (5.2)),  dh" is defined by (4.14) and = %+1-i where zi 

Thus, en and en can be estimated as 

llt"ll, JlrU B c,At4sup{ Ih("(t)l : t / A t  e[n-6,n+2]] , 
and c15 is simply a numerical constant. 

5 5 
A necessary condition for t o  be of class -& is that h E. -6. 

Let us therefore assume that h(*)(O) = h(l)(O) = ... = h(')(O) = 0 

and that  hc&'[O,f+2At]) where T is  the solution of (5.11) , and 

&fine h(t)  = 0, - u( t )  = "A 0 for t < 0. 

G(t) =3( t ,u ( t ) )  * L u  for a11 t E [-00, T]  Moreover, 

Then u,a&([-m,t]) and 
Y 

(5.16) 

Since the Lipschitz estimate on 3 is not a global estimate 

the above proposition cannot be used direct ly  for  the scheme (4.15). 

But an argcnrent similar t o  the one used t o  prove the existence of 

in  5 5.3 can be employed to  show that the proposition is  applicable 

to 3 over a time interval [O, T,] 

However, because we are interested in  deriving a posteriori error 

estimates for cr we shal l  foilow a different argunent. 

where T, + m  as A t t o .  - 

Let F S  T and set C7 (T) = max {llgnll, 11%.-"11 : n s  T / A t ] .  Note 

that 5 &per,& implicity on A t ,  AX and N , but we shall v i e w  these 
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. 

as being fixed for  the present. Regard F as a quantity courputed 

by the above code. Therefore 5 is known, a t  least a posteriori .  

Define 
I 

B(T) = {y fRN:  l{%?.!l ts m r { ? f ( C ) ,  I+cr ( r ! ] }  

Thus, when 7 T , a l l  the quantities u", M gn and u ( t )  u belong 

t o  B(7) for t, n A t c [ O , f l .  

on [O,?]X B(?) and such that f(t,g) is globally Lipschitz 

continuous in 2 (for t E [0,7] 1, w i t h  a Lipschitz constant not 

exceeding the Lipsdritz canstant for 3 restricted t o  B(T). This 

is possible because the temporal dependence and the 2-dependence 

Then, define m f t o  be equal t o  3 

in .c 3 decouple (cf. 5.13) 

constant for f is afforded .... 
K R )  = C'( 1 + 

Since gn, g- and E ( t ) ,  

In particular, a bound for  h e  Lipschitz 

bY 

2 m a J C { m ,  4 + a ( ' i ) ] )  . 
for  t, nbt c LO, may be viewed 

equivalently as having been generated e i ther  b y 2  or - f , the above 

for all ~s T / A t  . Here, ct6  is a numerical constant and 

Kl?)[17+30K(?)At].  cd = c , [ c ( i ) ,  5(7)] = 

Then, combining t h i s  estimate with (5.10) and (5.14) w have, for 

Os 7: s and for a l l  n , c i / A t  that  

e2 . 
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( 5 )  The quantities ei(t) = e; (h: ( t ) , .  . .,h (t), r(t),z;(t),t,At,Ar, N A u ) ,  

i z 2, w i l l  be used t o  denote error  expressions that tend t o  zero as 

A t ,  Ax-tO and NAis+a, .  Thus, e, provides an estimate for the to ta l  

e m r  i n  the discrete scheme. In particular,  for  fixed > 0, (5.17) 

shows that 

I 

for  a l l  ngT/At ,  for  i = l , . . . ,N  and for  any r such that  O d r <  %-"2. 

The constant c, is independent of A t, A x  and N but depends on 

a,/,r,p,r, h as well as T, and it 4s assumed that 5 fi) stays 

bounded independently of A t ,  A x  and N. 

However, the above estimates have the shortcoming that the 

quantity cfi) appears exponentially on the right-hand side and 

that  the a priori  bound (3.3) for  cr allows the possibil i ty of 

growth in  t h e .  To obviate the possibi l i ty  of such large growth 

rates,  we shall derive an a posteriori  bound on r r  based on our 

knowledge of 5 . Estimate (5.17) and the mean-value theorem 

imply that 

Then an upper bomd for  17 (x,t)l for  a l l  x2 0 follows fran lema 3.2 

and we have that - 

= ~ ( 7 )  + e4 . (5.18) 
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AS in the definition (5.11) of T, there is a unique T, > 0 such 

" 

that 
1 

e,[h:(Td,-. , hf(T2), lt5(T2),Z(T2),T2 , b t , A s , N A t ]  = 1 (5.19) 

Furthermore, T2+m as A t , A z + O  and Nhs-rao, provided that F ( t )  

remains f in i t e  fo r  a l l  f in i t e  t> /  0. Thus, it follows fran (5.18) 

that 

a b )  4 1 +fF( t )  for t e  [O,T,] (5.20) 

and T, < T. Also we see that  

] U T -  ?(iAx,nAt)l s e,[h$(T) ,... ,h(MS)(T),l+~(T),8(T),T,At,Ar,NAz], 

fo r  1 s i s N, n s T/At and 0 T Q T2 , where e2 is &fined by 

(5.17) and T, is given by the solution t o  (5.19). 

Thus, in surmary, we have the following result. 

Theorem. At be positive parameters not exceeding one. 

- Let N be a positive integer and let .T > 0. 

that h"'(0) = 0 

- t o  (3.1). 

1s i sN,  lsnsT/At}.If - T L T,, as defined by (5.19), then 

Suppose that  

- for  i = 0, l,.. .,5, and that  is the solution - 
Let - s L  an be the solution of (4.15) and le t  @(T) = MU{ Iu? I : 
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*re, 0 4  r c  t-hj c L ,  ~ 1 2  , cip 

(introduced previously) which depend only on OC, p , Y ,  p 
c_ and r ; P is defined in the proof of lema 3.1,l;C is defined 

in lemna 3.2; hlf: , i - 0, ..., 5, are defined by (3.10); Q s  - is 

a n d c f 6  are constants - I 

and inp5.3 

defined in 85.3 (cf. (5.14)). 

Remarks. (i) The effects  of round-off error  can be incorporated 

into the above theorem as follows. 

(5.15) include the romding error associated w i t h  the computation 

of f n ,  y" etc. ,  a t  each time step. 

error  is bounded by 8, (which w i l l  depend an N, As etc . ) .  Then, 

using the proposition as stated,  the f ina l  estimate i n  our theorem 

is modified simply by the addition of the tern eR [ e r p ( % ( T ) T ) - l ] / ~ ~ ( T ~ .  

Let the errors E", B" of 

Suppose this additional 

( i i )  A consequence of the a posteriori estimate is that 

we can replace the bound u by l+E wherever it appears in the 

preceding estimates. However, (I and 5 may be small with respect 

to  one, say O k )  and this replacement might not be a particularly 

good one. If we were t o  define T , T, by the unique solutions to  

q(To)=C and e4&) = E respectively, then (7 6 3 + ~  on [ O,T,] 

so that  Q may be replaced by ? + E  wherever it occurs. 

we could define E = ~CGJC E l t )  t 

In fact ,  

and then cr can be replaced by 2~ on 

[O, T2] Note that,  regardless of the s ize  of E > 0, To and T, 

tend t o  infinity as A X ,  A t - t O  and N A 3 ~ t o o .  
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6. E ) ( P E U w &  APPARlu'Us AND P W D W  

6.1 Experimental apparatus 

The experiments were carried out in a uniform channel of 

length 5.5 m and width 30 an. 

with a plane beach of slope 1 : l O  ; a t  the other end there was a 

rigid plane f lap which was used to  generate the waves. The gap 

between the f lap and the  sides and bed of the channel was packed 

with foam plas t ic  t o  restrict leakage past the wavemaker. 

rest position the f lap  was vertical and n o d  t o  the w a l l s  of the 

One end of the channel was f i t t e d  

In its 

channel. 

was normal t o  the walls of the channel a t  a height of about 1 m 

above the bed of the channel. 

t h i s  axis.  

these experiments, the effective action of the paddle was very 

similar t o  tha t  of a plane piston. 

oscil latory nrotion by a long crank attached t o  an eccentric on the 

shaft of a synchronous motor. Thus, the frequency and aql i tude 

of the paddle motion were f&ed for any given experiment and the 

arrangement was such that  the paddle could be set oscil lating almst 

instantaneously under these conditions. 

I t  was supported by a horizontal shaft, the axis of which 

The shaft  was free t o  rotate about 

Since the water depth i n  the channel was only 3 an for  

The paddle was forced in  an 

The w a l l s  and bed of the channel were made f r o m  plate glass. 

The width of the channel was uniform t o  w i t h i n  0.01 an and the bed 

was levelled so that  it deviated f r o m  a mean horizontal plane by no 

more than 0.040 un. 

was 0.020 cm.) 

any unevenness hi the bed gives rise to  reflected waves and systematic 

variations in depth lead to phase speeds different from those expected 

for  a uniform channel. 

(The r.m.s. variation in  depth from the mean 

The levelling of the tank can be quite important, as 

The walls of the channel were lined w i t h  an 



absorbent bandage t o  provide even wetting a t  the shoreline. 

have heights were mebsured by means of proximity transducers 

(Briefly, the principle of placed near the  surface of the water. 

the instrument is that  these transducers form one plate  of a 

capacitor, the l iquid surface being the second plate.  

the capacitance i t  is possible t o  infer  the distance of the water 

surface from the transducer.) 

relayed t o  an ultraviolet  chart recorder, giving a continuous 

record of the surface elevation. 

system extended f r o m  d.c. t o  about 1 kHz. 

and range of a given transducer is  related t o  its area,we have, by 

choosing the appropriate transducer, recorded wave amplitudes 

ranging between 0.005 an and 0.S an with about the same relat ive 

accuracy over the ent i re  range. 

were accurate t o  within about 2% of the rnaximum recorded amplitude 

By determining 

The output from these transducers was 

The frequency response of the 

Since the sensi t ivi ty  

The wave heights thus determined 

i n  any given run. 

6.2. Experimental procedure 

The tank was f i l l e d  with water t o  roughly the desired depth 

and surface films were skimmed off.  

un t i l  the level w a s  within 0.001 un of a reference level, set by the 

t i p  of a pointer gauge. 

the mean water depth was 3.00 an (the main uncertainty deriving from 

the unevenness in the bed, see above). A number of transducers 

(usually four) were then positioned along the channel, the distance 

of each transducer from the mean position of the wavemaker being 

known t o  w i t l h i  about 1 min. Typically, 'me first transducer was 

placed about 15 t o  20 cm from the wavemaker. 

wavemaker theory (see Havelock 1929), we judged t h i s  distance t o  be 

The water was then topped up 

For a l l  the experiments t o  be described 

On the basis of linear 
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c 

w e l l  beyond the extent of the parasitic f ie ld  of the wavemaker. 

The other transducers were then placed a t  distances of about 

120 cm, 220 an and 320 an from the wavemaker. , 

When the surface of the water in the tank was free of 

disturbances the wavemaker was set i n  motion, executing sinusoidal 

oscil lations a t  a fixed amplitude and frequency, and the water 

elevation at each of the transducers was recorded. The experiment 

w a s  stopped when the wavefront reached the beach a t  the f a r  end of 

the channel. All experiments t o  be described here were made a t  a 

fixed period of 0.6930 s (i.e. Uo= 0.5014) for  the mt ion  of the 

paddle, but the amplitude of the motion was changed f r o m  experiment 

t o  experiment. by adjusting the throw on the driving crank. 

Under the above conditions the theoretical wavelength of 

infinitesimal waves is 36.00 cm, giving a wavelength-to-depth ra t io  

of 12 : l .  (The reasons for  this choice are outlined in $2.5.) I t  is 

instructive, then, t o  examine typical experimental conditions in 

relation t o  some of the theoretical assumptions for the model equations, 

as described in 4 2.1. 

(a) 

and 0.2. 

The wave amplitude, f , took values ranging between 0.002 

(b) The wavenumber, k, , was nominally 0.5234. The main reason 

for requiring that k be 'small' is that the dispersion relations for  

the mdel equations should be good approximations to  the dispersion 

relation derived f r o m  the f u l l  linear theory (see equations (2.4)). 

For k = 0.5234 the  phase speeds, o / k ,  for the three models are 

Model Exact Kdv M 

/k 0.9580 0.9543 0.9562 

so that the error i n  the phase speed for infinitesimal waves, arising 
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from the use of model M, is  less than 0.2%. 

(c) 

(d) 

The paramter S (= & ( A / c ~ ) ~  ) took values between 0.4 and 36. 

The influence of surface tension i s , t o  increase the phase 

speeds by about 0.1% (see Whitham 1974, p 403), which i s  smaller than 

the differences indicated i n  (b) above. 

6 . 3  Comparison procedure 

The analogue data representing the wave profiles were recorded 

a t  a chart speed of 300 mm s-' so that , in  one period of the wavemaker, 

roughly 200 mn of Nrt paper moved past the marking beam. 

discretization of t h i s  signal was made by measuring the wave amplitudes 

A 

at 4 mm interva1s.t The peak-to-trough amplitude of the trace on 

the chart paper was adjusted t o  be about 60 to  70 mm (by suitably 

aniplifying the output from the proximity gauge) and the displacement 

of the trace from i ts  undisturbed position was measured to  within 

about 2 0.3 nun. 

s tep of 0.2401 but preliminary t e s t s  suggested t h i s  would be too 

coarse for  the degree of accuracy we would l i ke  for the numerical 

The above discretization corresponded t o  a temporal 

solutions. So, i n  order t o  use a time step of half this value, a 

(second-order) interpolation was made of the data obtained from the 

transducer nearest the wavemaker and the resulting data s e t  was then 

used as the boundary datum,h,for the numerical computation. The 

i n i t i a l  datum g w a s  taken t o  be zero for  a l l  experiments. 

I f  the theoretical solution a t  the location X is given by 

y ! x , t ) ,  t e [ @ , T I  , m d  the observed wave amplitude at the s a  

t 
th i s  restricted the range of experiments we were able t o  make i n  the 
present study . 

Digital rec0rdir.g and sampling f a c i l i t i e s  were not available and 



-51- 

c 

position is denoted by d X , t ) ,  let  us define an 'error' E l r ) ,  re R , 
between the two sets by 

M M 
E ( r )  = L [ I y ( X , i A t - C )  - ~ ( X , i A t ) l A t ] / ' z  i = O  { l ~ ( X , i A t ) l A t ] ,  (6.1) 

i- 0 

where MAt  = T . The reason for introducing z here is that  

inf [ E(r) : Z E  R 

shape between the functionsyandu,whereas the value of t tha t  

realizes the infirnun is  effectively a phase error and can be used 

t o  pmvide a measure of the difference i n  the speed of propagation 

of the two waveforms. 

but give a relatively large value for  €@)by virtue of only a small 

'phase' error. 

gives essentially a measure of the  difference i n  

Thus,qandvcould have a very similar 'shape' 

So, i n  making comparisons between theoretical 

and experimental data, it is useful t o  evaluate 

the 'phase' error. 

E(0) , inf E and 

The numerical solutions used fo r  the comparisons t o  be described 

i n  $ 7  were obtained on a CYBER 175. 

as used i n  the computations, the error E(0) between an exact solitary- 

With At= 0.12005 and A.x=O.15, 

wave solution of the  model equation and the computed solution, under 

conditions comparable t o  those of the experiment, was about 0.1%. 

7. EXPERIMENTAL RESULTS 

7.1 Damping coefficient 

A determination of the damping along the channel was made from 

the steady wave f ie ld  established a f t e r  the wavemaker had been 

working for a long time. Although th is  situation greatly simplifies 

measurements of the wavefield, it adds the complication of having to  

identify the incident and reflected wave components. However, such 

a separation can be made without too much diff icul ty  i f  there are no 

nonlinear effects present and i f  the waves are mnochromatic. Indeed, 
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for  the same conditions as those used i n  the present experiments, 

Mahony i3 Pritchard (1980) measured a lapse rate 7 - ' y X  of 0.38 x lo-'  

a t  a wave amplitude of about 0.009. 

a check 

0.003 and t h i s  gave the same result as that  found previously. 

Such a &cay ra te  leads to  a value for  p in (M*) of 0.014. 

Prior t o , the  present study 

of the decay ra te  w a s  made a t  an amplitude of about 

7.2 Two-dimensionality of the wavefield 

The magnitude of the cross-channel variations of the wave- 

f i e ld  were measured to  see by how much the assumption of two- 

dinmsionality of the wave motions was violated. This measurement 

w a s  made by placing two transducers a t  different positions across 

the channel, but at  the same distance along the channel irom the 

wavemaker, and the difference between the signals from each of the 

transducers was fomed. 

The most important cross-channel structure was that of a 

transverse wave motion, an example of which is  given in fig.  7.1. 

The waveform observed a t  the centre of the tank, a t  a distance 46.3d 

from the paddle, i s  shown i n  f ig .  7.l(a) and the difference between 

the wave in the centre and that a t  a distance 5.9 cm from the side 

of the tank is shown in f ig .  7 . l ( b ) .  The transverse wave is seen t o  

have an amplitude of about 4% of that of the longitudinal wave and a 

frequency twice tha t  of the forcing frequency of the wavemaker. 

This is roughly the scale of the transverse motions at  each of the 

observation points: a t  a l l  amplitude settings. 

across the tank relative t o  the other, it was also found t o  be 

representative of the size of the cross-channel variations. A t  the 

smaller wave amplitudes used in the experiments ( E less than about 

0.01) a transverse motion w a s  also evident, but the voltage differences 

I 

By moving one transducer 

~ 

~~ 

~~ 
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S 

0.u) 

0.95 

4.5 

5.5 

11.8 

18.1 

26.3 

55.9 

I n 
Station 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 

m P 

0.320 0.331 
0.079 0.57 
0.444 0.495 
0.094 0.33 

0.185 

0.330 

0.480 

0.017 

0.017 

0.022 

0.103 
0.092 0.06 
0.191 
0.106 0.22 

0.429 
0.426 0.07 
0.549 
0.509 0.22 

71.5 

104.4 

40.1 

71.5 

0.0045 0.05 0.2Q0 

0.0043 0.93 0.108 

0.0274 1.07 1.77 

0.0229 1.23 1.12 

0.139 
0.123 0.21 
0.153 
0.121 0.16 

0.187 0.092 

0.?39 0.096 

0.186 
0.120 0.27 
0.420 
0.107 0.51 

0.431 
0.373 0.19 
0.845 
0.546 0.66 

0.236 

0.393 

0.560 

0.368 

0.456 

0.5% 

0.152 

0.245 

0.204 

0.475 

0.103 

0.551 

-- ~ 

0.235 
0.221 0.21 
0.331 
0.128 0.55 

0.401 
0.318 0.63 
0. 880 
0.358 1.18 

0.268 

0.544 

0.944 

0.951 

1.35 

1-57 

39.3 

70.9 

103.8 

0.201 

0.155 

0.124 

0.324 0.479 

0.451 0.746 

0.207 

103.8 0.0017 + 0.78 - 0.74 

0.076 

0.336 0.101 
0.097 0.06 
0.099 
0.092 0.06 
0.183 
0.110 0.20 

0.189 0.464 

0.321 0.657 I I 0-116 
0.271 
0.130 0.29 1.34 0.606 

1.13 

1.31 

1.42 

1-98 

1.27 

0.601 

0.109 
0.131 0.06 
0.115 0.337 0.127 
0.114 -0.03 
0.132 0.471 0.174 

0.115 0.379 

0.212 

2.15 

0.954 

1.70 - 
2.88 

0.274 :::; 0.32 1 0.230 0.34 
0.223 0.292 
0.210 -0.27 I o'208 1 1.47 

1.70 
0.255 0.357 0.390 
0.193 -0.34 
0.200 1 0.522 1 0.409 
0.189 -0.00 * 0.Q917 0.164 0.279 

0.142 4.23 I 0.272 4-15 
0.431 
0.318 -1.01 
0.510 
0.310 -0.80 
0.641 
0.334 -0.66 

0.376 
0.162 -0.01 0.333 0.30 
0.162 I 1.40 

1.62 

10.8 

~ 

0.760 
0.645 -5.22 
0.470 
0.265 -1.94 
0.642 
0.475 -1.70 

0.352 

0.197 0.375 

0.452 

10.8 

39.6 I 0.153 1 2.16 8.92 

0.851 
0.523 -2.52 
1.17 
0.447 -2.26 
1.37 
0.510 -1.86 

2.64 

3.07 

3.34 

4.91 

2.82 

0.512 1.51 
0.156 0.63 I 0.580 1.46 2.92 

c 

TAgLE 7.1 Detailed sumnary of caaparisons IT& using the nodel 

I t  + a - [ x  + p?% - P ' l z r  - Y%r,t - p 9 

r b j m  t o  ?(O,t)=h(t), ~ [ z , O ) - O , x ~ O , t ~ O . T k  entries for each alum J I ~  defmc3 at the foot of 
the Wie.  
indicated at thc top of the sppropriate wlm, with the abbrevirtirns taking the bllowing meanings. 

I=ill.merrhlel: a =  1 ,  1 -0 ,  p = 0 . 0 1 4 , Y = f .  

D?&U the caputed sprd ercmls the e r p e r m d  value. 

Thc errors, defined accordmg to (b.1). are a conpar~xm between the t*o .wts of data 

wt: EsprriPenul data; Dissip. -1: a = 1 D B =  j , u = ~ f 4 , ~ - i ;  InvircidCWel: O L = ( , P = # , ~ - O ,  

p rrpresents the error rn the 'pluse' speed pivm as a prcent.jp of the l lq-wavel spnd,~ggd; p>O 
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between the two transducers were SO small that  they were only 

comparable w i t h  the noise level and it was therefore d i f f i cu l t  

t o  make any  definit ive statements about the fqequency content of the 

transverse wave. However, the relat ive size of the transverse 

waves was certainly no greater than a t  the larger amplitudes. 

The structure of t h e  cross-channel motions was evidently 

rather complicated, being forced by the meniscus on the side walls 

o r  by the second harmonics of the longitudinal waves. 

expect the transverse motions t o  consist mainly of a mixture of 

wave modes of t h e  form cos(mny/b) , where y is the cross-channel 

coordinate, b is the  width of the channel and m i s  a natural number. 

Since waves a t  a frequency 20, sa t i s fy  the dispersion relation 

We would 

w = (htanhh); a t  a value of k C= 1.2043, corresponding t o  a wavelength 

of 15.65 an here, it would appear t h a t  the modes most easi ly  excited 

should have been those w i t h  m = 3 or  4. Naves with m = 3 would have 

been able to radiate along the tank, whereas those with m = 4 would 

have been decaying modes. 

7 .3 .  The main comparisons 

The main results of t h i s  study are summarized i n  table 7.1 and 

i l lus t ra ted  in  figures 7.2 - 7.14. Several different kinds of tests 

have been carried out, as indicated in the  table, but only a selection 

of the  results are shown graphically. The eight experiments described 

i n  the  table are defined by the parameter S ,  which ranged between 0.38 

and 36. 

the transducer re la t ive to  the one used fo r  the d e t e d n a t i p n  of h( t ) ,  

the actual distances between the two transducers being given in the 

The 'stations '  A,B,C are used t o  reference the locations of 

* 

column headed ' x '  . 
The c o l m  headed - logr / log& indicates the position of the station 

The wave amplitude E is taken t o  be sup { I  h1J. 
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expressed as a power of E-' 

station a t  which the boundary data h ( t )  were measured as the 

'boundary s ta t ion ' .  I 

Henceforth we s h a l l  refer  t o  the 

The comparisons given i n  c o l m s  I - I11 are the differences 

E, as defined i n  96. 

the difference E(0) and the entry below that  i s  inf { E(r) : r~ R 

The entry to  the right L - C  :! -- 1 -4 indicates the 'phase error' 

r a t  which the infimum of E was realized, the error  being expressed 

The upper left-hand entry a t  each station is  

as a percentage of the time taken for a wave of speed 1.0 t o  reach 

the station. I t  is taken t o  be positive when the computed speed 

exceeded the experimental value. 

between the experimental results and the wave amplitudes predicted by 

(M*). 

dissipative effects  were included in the computations. 

results in the th i rd  column the nonlinear corrections were not 

included but dissipation w a s  retained in the theoretical model. 

The f ina l  two columns of the table show comparisons between 

different mathematical models, so only the difference E(0) is given. 

Thus, the second-last column shows the difference between the solutions 

with and without dissipative effects included and the last column gives 

an indication of the importance of the nonlinear tern. 

Column I shows the comparison 

The second column shows the same kind of comparison, but no 

For the 

In the figures to  be presented the uni t  used for  the temporal 

axes is the time step 

The diamond-shaped symbol represents the experimental data, in i ts  

discretized form,and the continuous curves are piecewise l inear 

segments linking the computed values of the wave amplitudes a t  the mesh 

A t  and that  used for  spatial  coordinates is Ax 

points. 

The graph shown in figure 7.2 is the discretized form of the function 
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h used for the  experiment a t  S = 5.5. The various comparisons 

Figure 7.3a for t h i s  experiment are shown in figures 7.3 t o  7.5. 

shows the wave amplitudes as a function of z ap four different times 

and figure 7.3b gives the comparisons between the nonlinear, dissipative 

version of (M') and the experimental results. 

the relative differences E between the two functions were approximately 

11$, 11% and 2 1 %  a t  stations A,B,C respectively but, a f t e r  allowing 

for  small phase-speed corrections of about 0.2% these differences 

were reduced t o  about 8 % ,  8% and 12% respectively. 

including the  dissipative term is  indicated by the resul ts  i n  figure 

7.4,  where the numerical solution i s  seen to  differ markedly from the 

experimental results (cf. co lmis  I1 and IV of table  7.1) 

other hand, the inclusion of the nonlinear 

S is not so important, as shown in figure 7 . 5  (and see columns I I 1 , V  

of the table). 

As given in the table, 

The importance of 

On the 

term at t h i s  value of 

Iiote that, under these conditions, namely S = 5.5, the nonlinearity 

had the effect of modifying the waveform by about 17% a t  a 'distance' 

from the boundary station, whereas the dissipative effects had & - l e a  

modified the waveform by 47% a t  the same distance along the channel. 

The nonlinear effects  seem to  have brought about only a s l ight  f lattening 

of the wave troughs and sharpening of the crests, a feature that  can 

be seen by comparing figures 7.3b and 7.5. 

A n  experiment for  which the nonlinear effects were of only very 

rriinor impoI-tance is  shown h figure 7 . 6 .  

and'the nonlinear tern affected the waveform by only about 2%.  

agreement between the theoretical prediction of (M*) and the observed 

waveform is not quite as  good as for  the results a t  S = 5.5, the main 

discrepancies apparently arising a t  the crests and troughs of the waves. 

In  t h i s  experiment S = 0.95 

The 
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Similiar comparisons are shown i n  figure 7.7 (for S = 4.5), i n  figure 

7.8 (S = 11.8) and in figure 7.9 (for the case S = 18.1). 

experiment a t  S = 11.8 

a t  the smaller values of S and th i s  was confirmed by the quantitative 

comparisons. 

t e rn  had had only a small beneficial effect  on the theoretical 

prediction of the observations but, a t  S = 11.8, the inclusion of 

the nonlinear term provided a significantly bet ter  mdel than the 

l inear  dissipative theory (cf. columns I ,  I11 of the table). On 

the other hand, the inviscid model gave a very poor representation 

of a l l  these experiments. Thus, while there was some advantage t o  

The 

showed roughly the sarpe kind of agreement as 

For the experiments a t  S = 4.5 and 5.5 the nonlinear 

be gained from retaining the nonlinear term under these conditions, 

it w a s  f a r  more important that  the dissipative effects  be taken into 

account . 
The theoretical prediction of the experimental results a t  S = 18.1 

was significantly worse than in the ea r l i e r  cases. 

the previous experiments the difference E was less than about lo%, it 
w a s  about 15% for  the conditions a t  S = 18.1. 

for  the poorer agreement a t  S = 18.1 is that the theoretical speed of 

the leading wave appears t o  have been too large (see fig.  7.9) , with 

the resul t  that  the phase correction needed to  minimize E(z) was 

Whereas for  a l l  

One of the main reasons 

'qu i te  different from that fomd for  the ear l ie r  experiments. The 

contribution from the nonlinear terms a t  S = 18.1, which was quite 

large, is indicated in  column V of the table. 

Two experiments a t  yet larger amplitudes were made, one a t  

S = 26.3 and the other at S = 35.9. a t  S = 26.3 

the s ta t ions A,B,C were located much nearer the bomdary station than 

in  the other experiments so that  they would not l i e  beyond the (formal) 

For the experiment 
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range of validity of the model equation. 

data h( t )  for t h i s  experiment is  given i n  fig.  7.10 and the structure 

of the wavefield along the channel a t  four times is shown i n  f ig .  7.11a. 

The comparisons between the numerical solutions and the observed 

waveforms are shown in figs. 7.11b - 7.13. 

the agreement between the theoretical predictions and the experiment 

w a s  not very close and the reason for  t h i s  is apparent f r o m  the graphs. 

The experimental results indicate the presence of a substantial amount 

of second-harmonic component which is not nearly so strongly evident 

in the theoretical solutions of figure 7.11b (In retrospect, t h i s  

property is also evident i n  the results shown in fig.  7.9 (S = 18.1), 

and f ig .  7.8 (S * 11.8)). A t  s ta t ion B the agreement is  seemingly much 

better than a t  the other stations,  but the reason f o r  t h i s  appears 

t o  be that the phase of the second harmonic is  such that  it reinforces 

the trough and diminishes the crest of the observed waveform and so 

the agreement i s  probably fortuitous. 

The fonn of the boundary 

A s  indicated in the table, 

The experiment a t  S = 35.9 gave similar kinds of comparisons 

(see fig. 7.14) t o  those shown for  the experiment a t  S = 26.3. 

7.4 Assessment 

The model appears t o  have given a f a i r ly  good description of the 

experiments a t  the smaller values of S ,  the differences being about 

8 t o  10%. 

t o  examine sone of the sources of error. 

error involved: one arising from uncertainties i n  making the physical 

measurements and the other from not matching accurately the assumptions 

on which the model is based. For the present experiments, uncertainties 

i n  the physical measurements were not more than 2 % ,  but since quantitative 

estimates of the other errors are not so easi ly  made we shal l  attempt 

To give more meaning t o  these comparisons it i s  worthwhile 

There are two kinds of 
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only a rough assessment of them. The non-uniformity of the waves 

across the channel (cf. 4 7.2)  was of the order of 4 or  5% of the 

wave amplitude. 

through the inaccuracy of representing the i n i t i a l  data h ( t )  and 

through the error  in  making t h e  comparisons a t  each of the stations 

A,B,C. 

dissipative effects and deficiencies arising from the use of a 

one-dimensional mdel.  

expect closer agreement than the 8-10% found a t  the smaller values 

of s. 

This feature could influence ,the results both 

In addition, there are  uncertainties i n  the representation of the 

Thus it does not seem as though we could 

However, as S w a s  increased, both the quantitative and the 

quali tative agreement between the experiments and the theory 

deteriorated, and it is of interest t o  ascertain why th i s  should 

have been the case. There appeared t o  be three possible causes 

for  the discrepancy. 

( i )  

( i i )  

The dissipative effects were poorly modelled. 

The presence of a non-negligible cross-wave component 

(cf. 7.2) .  
v2 

( i i i )  The dispersion relation w = (k t a d  k )  was not very closely 

approximated by (M*) for  wavenumbers near kl. Thus, although the 

phase speeds of waves with wavenumbers near ko were closely approximated, 

the phase speeds of the shorter wavelengths evident in,!experimental 

results were inaccurately represented by the model, and t h i s  feature 

could account for  some of the disparities. 

the 

Without developing new theory or  undertaking new experiments , 
it is  not easy to  account for  (i) and ( i i ) .  

t o  make an appraisal of our modelling of the dissipation (see $7.5) 

and it is our view that  t h i s  was not the min source for the 

We have, however, t r i ed  

L .  -. , I .  
”...#.. . .  
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discrepancies. 

t o  test the importance of ( i i i )  (see 4 7.6)  and the tests suggest that 

t h i s  was the main source of 

present experiments. 

I t  is, on the other hand, relatively straightzforward 

weakness of the model w i t h  regard to the 

7.5 Modellinrr the dissiDation 

The comparisons described in 4 7 .3 .  indicate that  the inclusion 

of dissipation is  crucial i f  the model is  to give a reasonable 

description of the experimental results. therefore, in view of the 

discussion of $ 2 . 3 ,  it seemed propitious to  examine the sensi t ivi ty  

of the theory to  different ways of modelling the dissipative effects. 

In the comparisons of 4 7.3 the theoretical solutions gave a 

reasonably good account of the experimental resul ts  a t  small values 

of S ,  but at larger values of S the agreement w a s  not so good. 

possible explanation of t h i s  is that wavenumbers different from 

k were being dissipated a t  an incorrect ra te  and, in particular,  

the harmonics were l ikely to  have been considerably overdamped because 

the dissipation was taken t o  be proportional t o  k2.  This  would 

certainly be the case i f  a l l  the damping occurred i n  the boundary 

layers (cf. eqn. (2 .5) ) .  

model t o  the way the dissipative effects were represented we have 

examined the consequences of using some alternative models for  the 

damping. For t h i s  purpose we shal l  work from the Ansatz that  the 

ent i re  damping a t  wavenumber k is proportional t o  

A 

0 

In order t o  t e s t  the sensi t ivi ty  of the 

I Icl"' , as 

suggested by the boundary-layer theory, with the constant of proport- 

ionali ty,  to 
k = ko. 

t o  

value problem when the model equation includes the pseudo-differat id  

, chosen t o  match the experimental decay rate a t  

however it  appears, a t  present, t o  be rather complicated 

implement a numerical scheme to solve the in i t i a l -  and boundary- 
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t 

. 

’12 
operator whose symbol is lkl 

study, we have chosen to  interpolate the  function &, J L l h  

the polynomial Y + pk’ . 
referred t o  as the (O,ko) interpolant, matched the magnitude of p0Iklh 

at k = 0 and at k = ko. 

waves with wavenumbers k7k0 a t  a much fas te r  ra te  than that  implied 

by p,,IkI” , we have also considered (ko,kl) interpolation of 

Thus, for  the purposes of t h i s  

by 

The interpolant usqd in 4 7.3, t o  be 

But since t h i s  interpolant w i l l  dissipate 

pol klh 

2 4  . 
where kl is  the wavenumber corresponding to  the frequency 

This w a s  done to  provide a different representation of the 

damping of the wavemodes at the frequency 20, 

experimental results (e.g. see fig. 7.11b). 

a lso examined the consequences of using Hermite interpolation of p,,lkfh 

by the function utpk’ a t  k = ko; i.e. the magnitude and derivative 

of the functions were matched a t  ko. But since the resul ts  were 

similar t o  those for  the (ko , kl) interpolation we shal l  not describe 

them here.) 

correspond to  the terms vq - p i z x i n  the different ia l  equation. 

evident in  the 

(We have, incidentally, 

Note that  the terms Y +  p k 2  in the dispersion relation 

A series of numerical experiments w e r e  carried out using boundary 

data of the form h(t)  = ?o s k % t  

tenns had been correctly coded, a preliminary test was made, using 

the linear mdel  ( p = O )  for which the decay rate  is known theoretically. 

To estimate the decay rate  along the channel from the computed 

solutions, the amplitudes of the wave crests were found at  a given 

time (t = 172.8) and were plotted a s  a function of t he i r  distance from 

the boundary station. 

for a few crests  near the front of the wavetrain, the amplitudes of 

the crests decreased at  roughly the rate  expected from the dispersion 

relation and that  the two forms of dissipation gave similar results. 

. To check that the dissipative 

This graph (figure 7.15) shows that ,  except 



For comparison, we have also included in the graph the results of 

the same experiment with no dissipative effects  (i.e. y = O , p = O  ). 

However, with /3= , the computed solutiqns differed 

significantly under the various representations of the dissipation, 

as i l lus t ra ted  i n  figure 7.16. 

wavefields, for io = 0.25 

roughly to the duration of a laboratory experiment. The comparison 

shown in this graph is  that  between the solutions obtained with the 

(0 ,ko) interpolation of p0lklk (dotted l ine)  and w i t h  the (ko , kl) 

interpolation of to Iklh ( fu l l  l ine) .  The substantial differences 

between these two solutions suggest that  it could be very important 

t o  model the dissipative effects  accurately. 

This graph shows the computed 

, a t  a time t = 172.8 corresponding 

To quantify the differences between these solutions we have 
N N 

evaluated the quantity E = j- 0 [17,(jAx,t)-rll(jAx,t)IAx]/~ j=O  [ Iq , ( jAx, t ) l f lx ]  9 

for  re[O,NAx] 

the comparison i n  fig.  7.16, the difference E = 0.313. 

list of comparisons, a t  various values of rl0 and a t  various times, 

is  given i n  table 7.2. A t  small values of ?o the differences were 

not too large, but with 

, where y,, 7 2  are the functions being compared. Thus, fo r  

Amre comlete 

ylo = 0.1 the differences had risen t o  about 

57.6 

10%. 

115.2 172.8 

0.005 
0.050 

0.100 
0.250 

0.034 0.039 0.041 
0.048 0.068 0.078 
0.065 0.098 0.119 
0.136 0.248 0.313 

" 

TABLE 7.2 Values of E when (0 , ko) interpolation of polkl"l 
compared w i t h  (ko , kl) interpolation of po}klvz , for  h( t )  = yo sin w , t .  

The computations were made with A t  = A x = 0.15. 

was 
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The solutions given in  fig.  7.16 suggest that  the form of 

dissipation used for the comparisons of 

the larger wavenumbers too rapidly, which toad account for the 

theoretical solutions not yielding the shorter wavelength components 

apparent i n  the experimental results. Such a possibil i ty was 

checked, i n  the case of the experiment a t  S = 26.3,  by using the 

(ko , kl) interpolation of Q,, lkl” 

A graph of the comparison is  given i n  fig.7.17, the error  E(0) being 

0.386, 0.283, 0.378 a t  the stations A,B,C respectively. 

could be reduced t o  0.368, 0.283, 0.363 with phase corrections of 

0.84%, 0.07% and 0.90% at the respective stations. The agreement 

is s l igh t ly  worse here than in i7.3. 

a t  the crests of the computed solutions were much smaller than those 

observed experimentally, whereas a t  s ta t ion B the computed amplitudes 

of the  crests were too large. But similar features t o  t h i s  were also 

evident in the solutions w i t h  no damping, i.e. Y =  )A = 0 

suggesting to  us that  the inaccurate model for  the damping of the 

larger wavenders  w a s  probably not the main source of these discrepancies. 

8 7.3 probably dampened 

t o  model the dissipative effects.  

These errors 

A t  s tations A,C the amplitudes 

(see fig. 7-12),  

7.6 The approximation t o  the  dispersion relatim 

F i r s t  we examine the dispersion relations for the various models. 

These are shown graphically in fig.7.18 where the shallow-water model 

( w = k) and oy1) (as well as KdV) are compared with the ‘exact’ relatia? 

W = (k tunh kIv2.  

small values of k; 

approximation is a poor model and a t  k = 1 a l l  three models give a 

poor approximation to  w = (k tanh k v .  

By construction, these relations are  a l l  close a t  

at k = 0.5 it is evident that  the shallow-water 

However, for  the wavenumbers arising in  our experiments, the  

equation 
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'7t + q c  + p q q x  + "'I - p q x z  - q X X t  = 0 

can be used to  provide a better interpolation of the 'exact' 

dispersion relation than that  afforded by (M). 

through a suitable choice of the parameters a, f . 
dominant wavenumbers appear t o  have been those corresponding to  

the frequencies wo and 2w, , we have chosen a, Y so that  the 

0 

This i s  achieved 

Since the 

phase speeds fo r  the linear form of (Mt) 

w i t h  those for  the 'exact' theory a t  the 

However, the displacement effects of the 

only to  a damping of the waves, but also 

(i.e. = 0) coincided 

wavenumbers ko and k1 . 
boundary layer lead, not 

t o  a correction i n  the 

phase speed of a wavemode (cf. eqn ( 2 . 5 ) ) .  

the boundary-layer correction t o  the dispersion relation t o  be of 

the form suggested by the theory of Kakutani & Matsuuchi (1975), 

Therefore, taking 

we have chosen 

with fo taken 

i n  47.3. 

Under the 

t o  interpolate the dispersion relation 

a =  ( k h h  k)"2 - e,,( l + i )  lkl , tz 

t o  be the empirical constant used for  the comparisons 

conditions of the present experiments t h i s  interpolation 

(7.1) 

gives oc = 0.9898, = 0.1325, for  which values the real  part of the 

dispersion relation for [Mt) is shown in fig.7.18(b), together with 

that  for  some' of the other models. 

result from the use of (Mt) for  the experiment a t  S = 26.3 are shown 

i n  f i g .  7.19. 

fig.7.19(a), shows a nmber of quali tative differences from that  

obtained with (SI') (cf . fig.  7 11 (a) ) , and the compariscn between 

(Mt) and the experimental results is  given i n  f i g  7.19(b). This 

comparison also shows a qualitative improvement i n  the prediction of 

The theoretical solutions that  

The spat ia l  form of the wavetrain, which is  given in 
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the experimental results over the comparisons given in figs. 7.11(b) 

and (7.17). The quantitative comparisons for  (Mt) , which gave 

differences for t h i s  experiment of 1 4 % ,  16% q d  18% a t  the stations 

A,B,C respectively, are summarized in table 7.3. 

represents a l l  the experimental results t o  within about 8% except for 

the experiments a t  S = 26.3 and S = 35.9. 

Indeed, (Mt) 

A graph of the comparison a t  S = 35.9 is  given i n  fig. 7.20. 

The leading wave a t  each station is represented very well by the 

model (cf. the results of fig. 7.14 for  (IP) , where t h i s  was not 

the case), but  the subsequent oscil lations were modelled less  

accurately. 

appendix B. 

Some other comparisons made with ( M t )  are given in 

Thus, it would appear that  some of the major discrepancies 

between the predictions of the model and the experimental resul ts  

originated i n  the poor theoretical representation of the phase speeds 

of some of the  larger wavenumbers arising in the experiments. 

8. R i s k  

The theoretical model predicted the experimental resul ts ,  t o  

as good an accuracy as could be expected, for  the experiments made 

a t  values of S ranging up to  11.8. 

w a s  found that the inclusion of a dissipative term was much more 

important than the inclusion of the nonlinear term, although the 

inclusion of the nonlinear term was undoubtedly beneficial in 

describing the observations. 

For these five experiments it 

A t  larger values of S there were features of the experiments 

~ 

that  were 

mainly t o  

nonlinear 

not predicted by the model. 

have been associated w i t h  harmonics (generated through 

properties of the fundamental wavefield) having wavenumbers 

These features appear 
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too large t o  be well represented by the small-wavenuher model. 

But by introducing a modification t o  the basic model that  represented 

more accurately the phase speed of  these hamnics ,  the description 

of the experimental lresults w a s  significantly improved. 

we feel that  the original model would provide a good description of 

experiments i n  which the dominant wavenumber is much smaller than that  

used here, over a f a i r l y  wide range of values of the parameter S. 

On t h i s  basis, 

Finally, it is interesting to reflect br ief ly  in a wider context 

on the implications of this study. 

unconditionally-stable, expl ic i t  scheme of fourth-order accuracy i n  

both space and time t o  determine our numerical solutions. 

these solutions t o  an accuracy of about 590 took roughly 10 s an the 

C Y E R  175, which w a s  about the same time as the physical run time of 

We have used an eff ic ient ,  

Computing 
‘ 

the laboratory experiment. Using a faster machine and with more 

ef f ic ien t  coding it is likely that the computation time could be 

reduced by a factor of about 10. Nevertheless, these numbers suggest 

t ha t  accurate computations w i t h  more complicated equations, such as 

those ar is ing in  weather forecasting, may be d i f f i cu l t  t o  realize. 

A- 

The first aGthor is grateful for the  -hospitali ty of the  Fluid 
Mechanics Research Inst i tute ,  University of Essex, Essex, England. 
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APPENDIX A .  Deficencies _- in - an approximate procedure based on 

the pure init ial-value problem 

Ne wish  t o  solve the pure initial-value nroblem 

'It + %c + m x  - 6 f Z x x t  - 0  - 9 X € R ,  (M bis) 1 

with the in i t i a l  condition 7 (x, 0) = g(x ) .  

datum g , t o  be determined empirically, is  not easi ly  obtained. 

Instead, a measurement of data y1(O,t)  = g(t), t 20, is made and, t o  

recover the intended problem, the function i ( t )  is  transformed to  

an 'equivalent ' spat ia l  representation 

However, the i n i t i a l  

(r) by the leading-order 

approximation T~ t yX = 0 to (M) . 
a small error, of order E , in  the representation E(.-) of the 

T h i s  transformation generates 

i n i t i a l  data g (s) , which ordinarily would not be important but, 

i n  the present example, is  equivalent t o  the introduction of a 

forcing term on the right-hand side of (M) of comparable size 

t o  the nonlinear and the dispersive tenns. 

To i l lus t ra te  the kinds of error  that can ar i se  i n  a 

practical  case, let  us consider the solitary-wave solution 

of (M), namely 

where qo is the (maximum) wave amplitude and x, is a constant. 

Suppose that the measured data g( t )  is given by 

then, by choosing x ,  large enough, the solution t o  the in i t i a l -  

and boundary-value problem for  (M) wi*A 

(taking ~ ( o , o )  = 0.1x10-*), is a close approximation t o  ( M )  for  



. 

x,t > 0 (cf. 43, xabie 4 . l j .  

If 'g(t) is now transformed t o  an 'equivalent' spatial  form, 

it follows that I 

from whidi we see tha t  z(x) differs  from the 'exact' form of g 

(the solution (Al) a t  time t = 0) i n  both its shape and phase, 

the phase difference between g(x) and "gx) being x ,  = 3 qoxo /( 1 t $7,) .  

Notwithstanding the phase error, le t  us, for the time being, 

investigate the importance of the 'shape' error  in E by using 

g(x-x,) as the i n i t i a l  data for (M> . N 

Thus, using a scheme similar to  tha t  described i n  8 3 (which 

can also be analyzed in a similar way) we have solved numerically 

the pure initial-value problem of) with q(x,O) = g(x-x,), which 

solution we denote by 

'exact' solution (Al)  . 

N 

N 1 (x , t ) ,  and have compared 5 with the 

The kinds of ermr that can arise in practice are shown in 

figure Al. 

correspond approximately to  the largest amplitudes used in  the 

laboratory experiments and the integration was carried on t o  about 

the same time as that occ- in the experiments. 

Here the wave amplitude )2,, = 0.25  was chosen t o  

r 
In figure Al 

the dotted line represents the function 5 and the  full  line 

represents the solitary-wave solution. 
N 

Let E = A Z O  .I {I q(jAx, t) - \(jA=,t)lAr}/ 
N 

[I q(jAx,t,)i AS] , where X E  [O,NAr], measure the difference 
j= 0 " 

between 6 and the 'exact' solution. 
approxilnamy 

g and g waslO.111. A t  time t = 32.0 the approximate solution 

The i n i t i a l  difference between 

had e4 

developed a dis t inct  oscil latory ta i l  and the difference E had increased 

t o  0.254. This difference then continued t o  increase with time, in a 
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roughly linear fashion, taking values of 0.561 a t  t = 96.0 and 

0.898 a t  t = 192.0. (The error E i n  integrating numerically a 

so l i ta ry  wave of amplitude 0.25 under the con+tions of t h i s  

experiment was less than 0.55 x The figure 

shows how the t a i l  developed by 5 gradually separated from the 

leading wave, 

t a i l  w a s  approximately 0.9719 a t  t = 192.0. 

the leading wave of 5 appeared t o  be evolving towards a sol i tary 

wave of the form (Al) with an amplitude of appmximately 0.2139, 

as determined from a fourth-order interpolation of the discretized 

solution. For example, the speed of th i s  wave differed from a 

solitary-wave solution ( A l )  of the sam amplitude by less than 

0.28 x 

a t  t = 192.0.) 

The speed of the leading crest of the oscil latory 

On the other hand, 

a t  t = 192.0 and the difference E between the two 

waveforms was less  than 0.27 x 

the crest of the solitary-wave prof i le  was chosen t o  coincide with 

tha t  of the leading wave of 5 and the domain 

the comparison was terminated at a distance a f r o m  the crest, where 

a was chosen so that  the sol i tary waveform had decayed t o  0 . 1 ~  

of i t s  maximum amplitude). 

(For t h i s  l a t t e r  comparison 

for  

Similar results were obtained with )lo = 0-1, except that  the 

i n i t i a l  error E a t  t = 0 was 0.048 and t h i s  degraded t o  0.095 a t  

t = 96.0 and 0.155 at  t = 192.0. 

the leading wave of 5 was 0.0971, but the wave was still undergoing 

significant modifications a t  this t ime .  

A t  t = 192.0 the amplitude of 

I t  should be noted that the above comparisons underestimate 

considerably the actual errors arising with t h i s  method because we 

have removed the i n i t i a l  phase error induced by the approximate 

transformation of the data. (For example, with v0= 0.1 and 
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x o  = 15.44 the error E between g(x) and g(x) was 0.197, cf. 

W i t h  the difference of only 0.048 between g(x) and g(x-x,).) 

more general data it wuld not be so easy to eliminate this 

init ial  phase error. 

. 



APPENDIX B .  More comparisons 

We present here graF!is of some of the comparisons l i s t ed  

i n  table 7.2 between the model ( M t )  and the experimental results. 

The graphs shown in  figures C1-CS are for  the e x p e r h n t s  a t  

S = 0.95, 4.5, 5.5, 11.8 and 18.1 respectively. 

from these figures that (Mt) gives a much better overall 

representation of the results than that  given by (M'), especially 

with regard to  the leading waves of the t ra in .  

I t  can be seen 

Then finally in  fig.C6 we give, for comparison with figs7.19b 

and 7.12 the  results of a calculation made with no dissipation. 
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FIGURE CAPTIONS 

FlGUH1; 7.1. A tracing of the transducer voltage recorded a t  a 
distance 46.3 d from the paddle. 
ordinate has been made dimensionless; the frequency of the 
paddle was 0.6930 s ( wo = 0.5401). (a) The wave prof i le  
a t  the centre of the channel. (b) The di’fference between 
a transducer a t  the centre and one placed a t  a distance 
5.9 an f r o m  the side of the channel. 

The boundary data h(t) used for  t h e  calculation 

The scaling fo r  the 

L 

FIGURE 7.2. 
a t  S = 5.5. 

FIGURE 7.3. The experiment a t  S = 5.5 is compared with (M*) 
(a) Computed 1 when a = 1, 

amplitudes as a function of r. . 
a t  s ta t ions A,B,C. 

= 8 , p =  0.014, V =  g - 
(b) Temporal comparisons 

/ 

FIGURE 7.4. The experiment a t  S = 5.5 is compared with the 
inviscid version of (M’) ( K =  1, /3 = 5 ,  p=O , Y =  & ). 

F I W  7.5, 
version 

a =  1, 

o c =  1, 

FIGUKE 7.6. 

FIGLJRt 7.7. 

FIGURE 7.8. 
a =  1, 

a =  1, 

F l W  7.10. 

F I W  7.9. 

The experiment at  S = 5.5 is compared w i t h  the l inear  
of (Id*) ( 0 ~ ~ 1 ,  

The experiment at S = 0.95 compared wi th  @I*) when 

The experiment at S = 4.5 is  compared with @I*) when 

The experiment a t  S = 11.8 1 is compared with (M*) when 
yS = 4 , p= 0.014, Y =  6. 

The experiment a t  S = ,18.1 is compared with (M*) when 

The boundary data h(t)  used fo r  the calculation a t  

= O ,  p=O.O14, 3 ‘ = & ) .  

1 != :, p =  0.014, Y = g .  

= $ ,  y =  0.014, d =  . 

@ = 4 , p= O . C l 4 ,  g - 
S = 26.3. 

FIGURE 7.11. The experiment a t  S ,= 26.3 is compared with (M*) when 
(a) Computed amplitudes a =  1, p = $  , ~{=0.014, Y = g .  

as a function of z . (b) Temporal comparisons. 

. FIGURE 7.12. The experiment at S 3’26 .3  is  compared with the - 
inviscid version,& (M*) (CC = 1, ,d = 9 , p =  0, Y + ) .  

FI(J@E 7.13. The experiment at S = 26.3 is compared w i t h  the linear 
version of (M*) ( cc = 1, / = 0 , p =  0.014, ;II= 61 ). 

F 1 W  7.14. The experiment at S = 35.9 is compared with (M*) when 1 = 1, p =  $ 3 p =  0.014, f =  6 

FIGURE 7.15. Computed amplitudes of wave crests as a function of 
distance from the boundary statim for linear models ( re = 0), 
with bomdary data h( t )  = T,, si*l w,t  . 
model ( Y = 0, /A=  0 ) ;  : y = 0, p=O.Ol; A :  U =  
0.24  x loe2 , ),L= 0.11 xl0-I.  The slopes of the straight 
lines are -( L, t p k: ) . 

Time t = 172.8. 0 :  inviscid 

The computations were made with  A t  =Ax 50.15. 



FIGURE 7.16. Computed wavefields a t  time t = 172.8 for  nonlinear 
models ( p = 5 ) w i t h  boundary data h( t )  = 0.25 sinw,t . 
, . . . . . . . : y = 0 ,  p = 0.014 ((0, ko) interpolation of po kl"2 ) ; 

: y = 0.340 x /J = 0.168 x ((ko, k , )  

interpolation). The computations were made with A t  = Ax = 0.15. 

FIGURE 7.17. The experiment at  S = 26.3 is compared with (Mt) (see 
§ 7.6) when K = 1, #3 = 3 V = 0.340 x p = 0.168 

2 ,  
1 x 10-2, Y = g . 

FIGURE 7.18. Graphs of the linear dispersion relations for various 
models. (a) ----: shallow-water model, w = k ; : 'exact' 
relation, w = (k tat?h k)"l ; --------- -  : model (M), w = k/(l+ 2 k ); 

of (a).---: w = k; : o= (k  f ~ n h k ) ' ' ~  ;-.-: 
-.-.-. * ( K d V ) ,  w = k(1- 2 k ). (b) Magnified version 

W = 0.9898k/(1+ 0.13251< ); -----*-------= : o k/ ( l  + k ). 

FIGURE 7.19. The experiment at  S = 26.3 is  compared with (Mt) when 
oc = 0.9898, /? = 3 , Y = 0.340 x p = 0.168 x 
7 = 0.1325. (a)Computed amplitudes as a function of 3c. 

(b) Temporal comparisons. 

FIGURE 7.20. The experiment at  S = 35.9 is compared with ( M t )  when 
a = 0.9898, /? = 8 , v = 0.340 x )-" = 0.168 x 

= 0.1325. 
FIGURE A l .  The solitary-wave solution of (M) ( fu l l  l ine)  is compared 

N 

with the solution t o  {M) with the i n i t i a l  data q(x,O) = g(x-x,) 
(dotted l ines).  The amplitude q,,, = 0.25 ; the  computations 
were made with A t  = Ax = 0.16.' 

FIGURE B1. The experiment at  S = 0.95 is compared with @It) when 
2 a = 0.9898, /I = $ , Y = 0.340 x 

Y =  0.1325. 
p = 0.168 x 10- , 

FIGURE B 2 .  The experiment a t  S = 4.5 is compared with (Mt) when 
a =  0,9898, /3 = f , Y = 0.340 x p = O . 1 6 8 ~ 1 0 ' ~ ,  

= 0.1325 
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FIGURE B3. The experiment a t  S = 5.5 i s  compared with (Mt) when 

cr. = 0.9898, = 3 , Y 0.340 x lo-”, p = 0.168 x lo-‘ , 
X = 0.1325. I 

FIGURE The experiment at  S = 11.8 is compared with (Mt) when 

/J = 0.168 x lo-’ , & ar. = 0.9898, 

L d =  0.1325. 

= $ , U = 0.340 x 10” , 

FIGURE B5. The experiment a t  S = 18.1 is  compared with ( M t )  when 

/A = 0.168 x lo-*, 2 a = 0.9898, 

% =  0.1325. 

= 3 9 Y = 0.340 x 10- , 

FIGURE B6. The experiment at  S = 26.3 is compared with the inviscid 

version of (Mi) ( a = 0.9898, f = $ , Y = 0, p = 0, Y = 0.1325). 
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